ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (3)
Collection
Years
Year
  • 1
    Publication Date: 2020-01-22
    Description: The effects of the addition of an aromatic hyperbranched polyester (AHBP) on thermal, mechanical, and fracture toughness properties of a thermosetting resin system were investigated. AHBP filler, synthesized by using a bulk poly-condensation reaction, reveals a glassy state at room temperature. Indeed, according to differential scanning calorimetry measurements, the glass transition temperature (Tg) of AHBP is 95 °C. Three different adduct weight percentages were employed to manufacture the AHBP/epoxy samples, respectively, 0.1, 1, and 5 wt%. Dynamical Mechanical Analysis tests revealed that the addition of AHBP induces a negligible variation in terms of conservative modulus, whereas a slight Tg reduction of about 4 °C was observed at 5 wt% of filler content. Fracture toughness results showed an improvement of both critical stress intensity factor (+18%) and critical strain energy release rate (+83%) by adding 5 wt% of AHBP compared to the neat epoxy matrix. Static and dynamic compression tests covering strain rates ranging from 0.0008 to 1000 s−1 revealed a pronounced strain rate sensitivity for all AHBP/epoxy systems. The AHBP composites all showed an increase of the true peak yield compressive strength with the best improvement associated with the sample with 0.1 wt% of AHBP.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-16
    Description: Synthesized silica nanoparticles (SiO2) were coated with a thin polydopamine (PDA) shell by a modified one-step procedure leading to PDA coated silica nanoparticles (SiO2@PDA). Core-shell (CSNPs) characterization revealed 15 nm thickness of PDA shell surrounding the SiO2 core (~270 nm in diameter). Different weight percentages of CSNPs were employed as filler to enhance the final properties of an aeronautical epoxy resin (RTM6) commonly used as matrix to manufacture structural composites. RTM6/SiO2@PDA nanocomposites were experimentally characterized in terms of thermal stability and mechanical performances to assess the induced effects by the synthesized CSNPs on pristine matrix. Thermal stability was investigated by thermogravimetry and data were modelled by the Doyle model and Kissinger methods. An overall enhancement in thermal stability was achieved and clearly highlighted by modelling results. Dynamic Mechanical Analysis has revealed an improvement in the nanocomposite performances compared to the neat matrix, with an increase in the glassy (+9.5%) and rubbery moduli (+32%) as well as glass transition temperature (+10 °C). Fracture Toughness tests confirmed the positive effect in damage resistance compared to unloaded resin with an impressive variation in critical stress intensity factor (KIC) and critical strain energy (GIC) of about 60% and 138%, respectively, with the highest SiO2@PDA content.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-17
    Description: In recent years, mussel adhesive proteins have attracted much attention because they can form strong adhesive interface interactions with various substrates in a wet environment. Inspired by their catechol- and amine-based molecular structure, polydopamine (PDA), a dopamine derived synthetic eumelanin polymer, was recognized as a suitable bio-interface coating. PDA was successfully used to improve adhesion due to the availability of copious functional groups for covalently immobilizing biomolecules and anchoring reactive species and ions. Recently, it has been demonstrated that PDA and its derivatives can be successfully used for the surface modification of implants interfaces to modulate in vitro cellular responses in order to enhance the in vivo functionality of biomedical implants (i.e., prosthesis). Herein, we propose the development of multifunctional scaffolds based on polyε–caprolactone (PCL) electrospun fibers coated with PDA via electro fluid dynamic methods, by optimizing polymerization/oxidation reactions capable of driving PDA self–assembly, and, ultimately, investigating the effects on cell response. Morphological analyses have confirmed the possibility to obtain different surface topographies as a function of the coating process while in vitro studies proved the ability of PDA coating to interact with cells no compromising in vitro viability. In perspective, in vitro conductive properties of fibers will be further investigated in order to validate their promising use as bioconductive interfaces for tissue engineering applications.
    Electronic ISSN: 2079-4983
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...