ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (5)
Collection
Years
Year
  • 1
    Publication Date: 2020-05-01
    Description: Context. The shape of the mass density profiles of cosmological halos informs us of the nature of dark matter (DM) and DM-baryons interactions. Previous estimates of the inner slope of the mass density profiles of clusters of galaxies are in opposition to predictions derived from numerical simulations of cold dark matter (CDM). Aims. We determine the inner slope of the DM density profile of a massive cluster of galaxies, Abell S1063 (RXC J2248.7−4431) at z = 0.35, with a dynamical analysis based on an extensive spectroscopic campaign carried out with the VIMOS and MUSE spectrographs at the ESO VLT. This new data set provides an unprecedented sample of 1234 spectroscopic members, 104 of which are located in the cluster core (R ≲ 200 kpc), extracted from the MUSE integral field spectroscopy. The latter also allows the stellar velocity dispersion profile of the brightest cluster galaxy (BCG) to be measured out to 40 kpc. Methods. We used an upgraded version of the MAMPOSSt technique to perform a joint maximum likelihood fit to the velocity dispersion profile of the BCG and to the velocity distribution of cluster member galaxies over a radial range from 1 kpc to the virial radius (r200 ≈ 2.7 Mpc). Results. We find a value of γDM = 0.99 ± 0.04 for the inner logarithmic slope of the DM density profile after marginalizing over all the other parameters of the mass and velocity anisotropy models. Moreover, the newly determined dynamical mass profile is found to be in excellent agreement with the mass density profiles obtained from the independent X-ray hydrostatic analysis based on deep Chandra data, as well as the strong and weak lensing analyses. Conclusions. Our value of the inner logarithmic slope of the DM density profile γDM is in very good agreement with predictions from cosmological CDM simulations. We will extend our analysis to more clusters in future works. If confirmed on a larger cluster sample, our result makes this DM model more appealing than alternative models.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-01
    Description: High-mass clusters at low redshifts have been intensively studied at various wavelengths. However, while more distant objects at lower masses constitute the bulk population of future surveys, their physical state remain poorly explored to date. In this paper, we present resolved observations of the Sunyaev-Zel’dovich (SZ) effect, obtained with the NIKA2 camera, towards the cluster of galaxies XLSSC 102, a relatively low-mass system (M500 ∼ 2 × 1014 M⊙) at z = 0.97 detected from the XXL survey. We combine NIKA2 SZ data, XMM-Newton X-ray data, and Megacam optical data to explore, respectively, the spatial distribution of the gas electron pressure, the gas density, and the galaxies themselves. We find significant offsets between the X-ray peak, the SZ peak, the brightest cluster galaxy, and the peak of galaxy density. Additionally, the galaxy distribution and the gas present elongated morphologies. This is interpreted as the sign of a recent major merging event, which induced a local boost of the gas pressure towards the north of XLSSC 102 and stripped the gas out of the galaxy group. The NIKA2 data are also combined with XXL data to construct the thermodynamic profiles of XLSSC 102, obtaining relatively tight constraints up to about ∼r500, and revealing properties that are typical of disturbed systems. We also explore the impact of the cluster centre definition and the implication of local pressure substructure on the recovered profiles. Finally, we derive the global properties of XLSSC 102 and compare them to those of high-mass-and-low-redshift systems, finding no strong evidence for non-standard evolution. We also use scaling relations to obtain alternative mass estimates from our profiles. The variation between these different mass estimates reflects the difficulty to accurately measure the mass of low-mass clusters at z ∼ 1, especially with low signal-to-noise ratio data and for a disturbed system. However, it also highlights the strength of resolved SZ observations alone and in combination with survey-like X-ray data. This is promising for the study of high redshift clusters from the combination of eROSITA and high resolution SZ instruments and will complement the new generation of optical surveys from facilities such as LSST and Euclid.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-01
    Description: Context. Distant galaxy clusters provide an effective laboratory in which to study galaxy evolution in dense environments and at early cosmic times. Aims. We aim to identify distant galaxy clusters as extended X-ray sources that are coincident with overdensities of characteristically bright galaxies. Methods. We used optical and near-infrared data from the Hyper Suprime-Cam and VISTA Deep Extragalactic Observations (VIDEO) surveys to identify distant galaxy clusters as overdensities of bright, zphot ≥ 0.8 galaxies associated with extended X-ray sources detected in the ultimate XMM extragalactic survey (XXL). Results. We identify a sample of 35 candidate clusters at 0.80 ≤ z ≤ 1.93 from an approximately 4.5 deg2 sky area. This sample includes 15 newly discovered candidate clusters, ten previously detected but unconfirmed clusters, and ten spectroscopically confirmed clusters. Although these clusters host galaxy populations that display a wide variety of quenching levels, they exhibit well-defined relations between quenching, cluster-centric distance, and galaxy luminosity. The brightest cluster galaxies (BCGs) within our sample display colours that are consistent with a bimodal population composed of an old and red sub-sample together with a bluer, more diverse sub-sample. Conclusions The relation between galaxy masses and quenching seem to already be in place at z ∼ 1, although there is no significant variation in the quenching fraction with the cluster-centric radius. The BCG bimodality might be explained by the presence of a younger stellar component in some BCGs, but additional data are needed to confirm this scenario.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-26
    Description: Large samples of galaxy clusters provide knowledge of both astrophysics in the most massive virialised environments and the properties of the cosmological model that defines our Universe. However, an important issue that affects the interpretation of galaxy cluster samples is the role played by the selection waveband and the potential for this to introduce a bias in the physical properties of clusters thus selected. We aim to investigate waveband-dependent selection effects in the identification of galaxy clusters by comparing the X-ray Multi-Mirror (XMM) Ultimate Extra-galactic Survey (XXL) and Subaru Hyper Suprime-Cam (HSC) CAMIRA cluster samples identified from a common 22.6 deg2 sky area. We compare 150 XXL and 270 CAMIRA clusters in a common parameter space defined by X-ray aperture brightness and optical richness. We find that 71/150 XXL clusters are matched to the location of a CAMIRA cluster, the majority of which (67/71) display richness values N 〉 15 that exceed the CAMIRA catalogue richness threshold. We find that 67/270 CAMIRA clusters are matched to the location of an XXL cluster (defined within XXL as an extended X-ray source). Of the unmatched CAMIRA clusters, the majority display low X-ray fluxes consistent with the lack of an XXL counterpart. However, a significant fraction (64/107) CAMIRA clusters that display high X-ray fluxes are not asociated with an extended source in the XXL catalogue. We demonstrate that this disparity arises from a variety of effects including the morphological criteria employed to identify X-ray clusters and the properties of the XMM PSF.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-01
    Description: The Cluster HEritage project with XMM-Newton – Mass Assembly and Thermodynamics at the Endpoint of structure formation (CHEX-MATE) is a three-mega-second Multi-Year Heritage Programme to obtain X-ray observations of a minimally-biased, signal-to-noise-limited sample of 118 galaxy clusters detected by Planck through the Sunyaev–Zeldovich effect. The programme, described in detail in this paper, aims to study the ultimate products of structure formation in time and mass. It is composed of a census of the most recent objects to have formed (Tier-1: 0.05 
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...