ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (2)
Collection
Years
Year
  • 1
    Publication Date: 2020-11-06
    Description: Background The Wolbachia incompatible insect technique (IIT) shows promise as a method for eliminating populations of invasive mosquitoes such as Aedes aegypti (Linnaeus) (Diptera: Culicidae) and reducing the incidence of vector-borne diseases such as dengue, chikungunya and Zika. Successful implementation of this biological control strategy relies on high-fidelity separation of male from female insects in mass production systems for inundative release into landscapes. Processes for sex-separating mosquitoes are typically error-prone and laborious, and IIT programmes run the risk of releasing Wolbachia-infected females and replacing wild mosquito populations. Results We introduce a simple Markov population process model for studying mosquito populations subjected to a Wolbachia-IIT programme which exhibit an unstable equilibrium threshold. The model is used to study, in silico, scenarios that are likely to yield a successful elimination result. Our results suggest that elimination is best achieved by releasing males at rates that adapt to the ever-decreasing wild population, thus reducing the risk of releasing Wolbachia-infected females while reducing costs. Conclusions While very high-fidelity sex separation is required to avoid establishment, release programmes tend to be robust to the release of a small number of Wolbachia-infected females. These findings will inform and enhance the next generation of Wolbachia-IIT population control strategies that are already showing great promise in field trials.
    Electronic ISSN: 1741-7007
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-03
    Description: The performance of a new historical reanalysis, the NOAA-CIRES-DOE 20th Century Reanalysis Version 3 (20CRv3), is evaluated via comparisons with other reanalyses and independent observations. This dataset provides global, 3-hourly estimates of the atmosphere from 1806 to 2015 by assimilating only surface pressure observations and prescribing sea surface temperature, sea ice concentration, and radiative forcings. Comparisons with independent observations, other reanalyses, and satellite products suggest that 20CRv3 can reliably produce atmospheric estimates on scales ranging from weather events to long-term climatic trends. Not only does 20CRv3 recreate a “best estimate” of the weather, including extreme events, it also provides an estimate of its confidence through the use of an ensemble. Surface pressure statistics suggest that these confidence estimates are reliable. Comparisons with independent upper-air observations in the Northern Hemisphere demonstrate that 20CRv3 has skill throughout the 20th century. Upper-air fields from 20CRv3 in the late 20th century and early 21st century correlate well with full-input reanalyses, and the correlation is predicted by the confidence fields from 20CRv3. The skill of analyzed 500hPa geopotential heights from 20CRv3 for 1979-2015 is comparable to that of modern operational 3- to 4-day forecasts. Finally, 20CRv3 performs well on climate timescales. Long time series and multidecadal averages of mass, circulation, and precipitation fields agree well with modern reanalyses and station- and satellite-based products. 20CRv3 is also able to capture trends in tropospheric layer temperatures that correlate well with independent products in the 20th century, placing recent trends in a longer historical context.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...