ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-30
    Description: The Zagros thrust belt is a large orogenic zone located along the southwest region of Iran. To obtain a better knowledge of this important mountain chain, we elaborated the first 3-D model reproducing the thermal structure of its northwestern part, i.e., the Lurestan arc. This study is based on a 3-D structural model obtained using published geological sections and available information on the depth of the Moho discontinuity. The analytical calculation procedure took into account the temperature variation due to: (1) The re-equilibrated conductive state after thrusting, (2) frictional heating, (3) heat flow density data, and (4) a series of geologically derived constraints. Both geotherms and isotherms were obtained using this analytical methodology. The results pointed out the fundamental control exerted by the main basement fault of the region, i.e., the Main Frontal Thrust (MFT), in governing the thermal structure of the crust, the main parameter being represented by the amount of basement thickening produced by thrusting. This is manifested by more densely spaced isotherms moving from the southwestern foreland toward the inner parts of orogen, as well as in a lateral variation related with an along-strike change from a moderately dipping crustal ramp of the MFT to the NW to a gently dipping crustal ramp to the SE. The complex structural architecture, largely associated with late-stage (Pliocene) thick-skinned thrusting, results in a zone of relatively high geothermal gradient in the easternmost part of the study area. Our thermal model of a large crustal volume, besides providing new insights into the geodynamic processes affecting a major salient of the Zagros thrust belt, may have important implications for seismotectonic analysis in an area recently affected by a Mw = 7.3 earthquake, as well as for geothermal/hydrocarbon exploration in the highly perspective Lurestan region.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-18
    Description: Using an analytical methodology taking into account heat flow density data, frictional heating, temperature variations due to the re-equilibrated conductive state after thrusting and geological constrains, we calculated surface heat flow, geotherms and isotherms along a balanced and restored regional geological cross-section. Our results highlight the impact of frictional heating produced by thrusts on the thermal structure of the study area, leading to a raising of the isotherms both in the inner Albanides to the E and in the Adriatic sector offshore. Minimum values of Qs in the surroundings of Tirana and the reconstructed 2D thermal structure suggest less favorable conditions for exploitation of geothermal energy, besides the direct use (Borehole Heat Exchanger-Geothermal Heat Pump systems). Nevertheless, the occurrence of the “Kruja geothermal zone”, partially overlapping this area and including hot spring manifestations, emphasize the structural control in driving hot fluids to the surface with respect to the regional thermal structure.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2021-10-11
    Description: Using published cross-sections and a series of geological constraints, a 3D geological model of an important area of the Adriatic sector of peninsular Italy—i.e., the Marche region—was developed. Then, an analytical procedure, taking into account the heat rising from the mantle and the radiogenic heat produced by the crust, was applied on the pre-built structural model, in order to obtain the 3D geothermal setting of the entire region. The results highlighted the key role played by the Moho geometry, particularly as a step of ~10 km occurs between the Adriatic Moho of the subducting plate to the west and the new Tyrrhenian Moho characterizing the back-arc area to the west. The comparison between our results and available borehole data suggests a good fit between the applied analytical methodology and published datasets. A visible anomaly is located at a specific site (i.e., the coastal town of Senigallia), where it may be envisaged that fluid circulation produced a local surface heat flow increase; this makes the Senigallia area a promising feature for the possible exploitation of geothermal systems.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-01-19
    Description: To unravel how and where coseismic and interseismic deformation impacts the spatial and temporal patterns of rock uplift of the Lurestan sector of the Zagros Mountains, we performed an investigation of the large‐scale features of topography and river network coupled with 2‐D finite element modeling. Geomorphological analysis and constraints from parameters such as elevation, local relief, normalized channel steepness index (ksn), river longitudinal profiles, and transformed river profiles (chi plots) were used to unravel the time‐space distribution of vertical motions. Whereas the much longer timescale over which topography grows and/or rivers respond to tectonic or climatic perturbations with respect to even multiple seismic cycles, the outputs of the finite element model yield fundamental information on the source of the late part of the spatiotemporal evolution of surface uplift recorded by the geomorphology. Model outputs shed new light into the processes controlling relief evolution in an actively growing mountain belt underlain by a major blind thrust. The outputs illustrate how coseismic slip controls localized uplift of a prominent topographic feature—the Mountain Front Flexure—located above the main upper crustal ramp of the principal basement thrust fault of the region, while continuous displacement along the deeper, aseismic portion of the same basement fault controls generalized uplift of the whole crustal block located farther to the NE, in the interior of the orogen.
    Description: Published
    Description: e2020TC006402
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Morphotectonic analysis ; Finite element modeling ; interseismic deformation ; coseismic deformation ; frontal topographic feature ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-19
    Description: Using an analyticalmethodology taking into account heat flowdensity data, frictional heating, temperature variations due to the re-equilibrated conductive state after thrusting and geological constrains, we calculated surface heat flow, geotherms and isotherms along a balanced and restored regional geological cross-section. Our results highlight the impact of frictional heating produced by thrusts on the thermal structure of the study area, leading to a raising of the isotherms both in the inner Albanides to the E and in the Adriatic sector offshore. Minimum values of Qs in the surroundings of Tirana and the reconstructed 2D thermal structure suggest less favorable conditions for exploitation of geothermal energy, besides the direct use (Borehole Heat Exchanger-Geothermal Heat Pump systems). Nevertheless, the occurrence of the “Kruja geothermal zone”, partially overlapping this area and including hot springmanifestations, emphasize the structural control in driving hot fluids to the surface with respect to the regional thermal structure.
    Description: Published
    Description: 6028
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: balanced cross-sections ; thermal modeling ; fold and thrust belts ; frictional heating ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-01-19
    Description: The Zagros thrust belt is a large orogenic zone located along the southwest region of Iran. To obtain a better knowledge of this important mountain chain, we elaborated the first 3-D model reproducing the thermal structure of its northwestern part, i.e., the Lurestan arc. This study is based on a 3-D structural model obtained using published geological sections and available information on the depth of the Moho discontinuity. The analytical calculation procedure took into account the temperature variation due to: (1) The re-equilibrated conductive state after thrusting, (2) frictional heating, (3) heat flow density data, and (4) a series of geologically derived constraints. Both geotherms and isotherms were obtained using this analytical methodology. The results pointed out the fundamental control exerted by the main basement fault of the region, i.e., the Main Frontal Thrust (MFT), in governing the thermal structure of the crust, the main parameter being represented by the amount of basement thickening produced by thrusting. This is manifested by more densely spaced isotherms moving from the southwestern foreland toward the inner parts of orogen, as well as in a lateral variation related with an along-strike change from a moderately dipping crustal ramp of the MFT to the NW to a gently dipping crustal ramp to the SE. The complex structural architecture, largely associated with late-stage (Pliocene) thick-skinned thrusting, results in a zone of relatively high geothermal gradient in the easternmost part of the study area. Our thermal model of a large crustal volume, besides providing new insights into the geodynamic processes affecting a major salient of the Zagros thrust belt, may have important implications for seismotectonic analysis in an area recently affected by a Mw = 7.3 earthquake, as well as for geothermal/hydrocarbon exploration in the highly perspective Lurestan region.
    Description: Published
    Description: 2140
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: active tectonics ; heat flow ; 3-D thermal modelling ; thermal structure ; temperature profile ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-07
    Description: We collected P and S phases from 516 earthquakes. Earthquakes were integrated with new pickings selected from the temporary array and relocated using the Hypoellipse code [Lahr, 1999]. The 1-D velocity model used in this work is based on the study by Santini et al. [2011], which was determinated for the solution of focal mechanisms of central-northern Marche. To constrain the subcrustal seismicity of the area, we added the layers between 35 and 100 km to link the structure of crustal velocity with the superficial part of the upper mantle, as defined in the spherical global models such as iasp91, ak135 [Kennett et al., 1995]
    Description: Published
    Description: San Francisco, CA, USA
    Description: 4IT. Banche dati
    Keywords: Montefeltro ; Northern Apennines (central Italy) ; sequences and seismic swarms ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-03
    Description: The Zagros thrust belt is a zone of deformed crustal rocks well exposed along the southwest region of Iran. To obtain a better knowledge of this mountain chain, we elaborated a 2D model reproducing the thermal structure of the “Mountain Front Fault”. This study, which is focused on the Lurestan region, is based on a model made by merging published sections and available information on the depth of the Moho. We present the isotherms and the geotherms calculated using an analytical methodology. The calculation procedure includes the temperature variation due to the re-equilibrated conductive state after thrusting, frictional heating, heat flow density data, and a series of geologically derived constraints. In order to perform the temperature calculations, the crustal structure in the Lurestan region is simplified as composed of two domains: A lower unit made by crystalline basement and an upper unit including all the lithostratigraphic units forming the sedimentary cover. The resulting model is compared with the numerical results obtained by previous studies to improve the description of the thermal structure of this geologically important area.
    Description: Published
    Description: id 301
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...