ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (2)
Collection
Years
Year
  • 1
    Publication Date: 2020-04-01
    Description: How magnetic fields contribute to the differentiation of the rotation rates of the Ap stars and affect the occurrence of non-radial pulsation in some of them are important open questions. Valuable insight can be gained into these questions by studying some of the most extreme examples of the processes at play. The super-slowly rotating rapidly oscillating Ap (roAp) star HD 166473 is such an example. We performed the first accurate determination of its rotation period, Prot = (3836 ± 30) d, from the analysis of 56 measurements of the mean magnetic field modulus ⟨B⟩ based on high-resolution spectra acquired between 1992 and 2019 at various observatories and with various instrumental configurations. We complemented this analysis with the consideration of an inhomogeneous set of 21 determinations of the mean longitudinal magnetic field ⟨Bz⟩ spanning the same time interval. This makes HD 166473 one of only four Ap stars with a period longer than 10 years for which magnetic field measurements have been obtained over more than a full cycle. The variation curves of ⟨B⟩ and of ⟨Bz⟩ are well approximated by cosine waves. The magnetic field of HD 166473 only seems to deviate slightly from axisymmetry, but it definitely involves a considerable non-dipolar component. Among the stars with rotation periods longer than 1000 d for which magnetic field measurements with full phase coverage are available, HD 166473 has the strongest field. Its magnetic field is also one of the strongest known among roAp stars. Overall, the magnetic properties of HD 166473 do not seem fundamentally distinct from those of the faster-rotating Ap stars. However, considering as a group the eight Ap stars that have accurately determined periods longer than 1000 d and whose magnetic variations have been characterised over a full cycle suggests that the angles between their magnetic and rotation axes tend to be systematically large.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-28
    Description: High-resolution spectropolarimetric observations of the strongly magnetic, superslowly rotating rapidly oscillating Ap star HD 166473 are used to investigate the implications of the presence of a variable strong magnetic field on the vertical and surface horizontal distribution of various chemical elements. The analysis of the calculated least-squares deconvolution Stokes I and V profiles confirms the previously reported detection of non-uniform horizontal surface distribution of several chemical elements. To test the vertical abundance stratification of iron peak and rare earth elements, magnetic field measurements were carried out using spectral lines of these elements belonging to neutral and ionized stages. We find clear indication of the existence of a relation between the magnetic field strength and its orientation and vertical element stratification: magnetic field values obtained for elements in different stages close to the magnetic equator are rather similar, whereas the dispersion in field strengths is remarkably large in the regions close to magnetic field poles. At the phases of negative and positive extrema the mean longitudinal field strength determined from the analysis of the rare-earth element lines is usually stronger than when using Fe and Cr. The strongest mean longitudinal magnetic field, up to −4160 ± 226 G, is detected using the La ii line list at the negative extremum, followed by the measurements using the Pr iii lines with 〈Bz〉=−3740 ± 343 G and the Ce ii lines with 〈Bz〉 = −3372 ± 247 G. The strongest mean longitudinal magnetic field of positive polarity, up to 3584 ± 354 G is detected using the Pr iii lines, followed by the measurement 〈Bz〉 = 2517 ± 249 G using the Ce ii lines.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...