ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (1)
Collection
Years
Year
  • 1
    Publication Date: 2020-05-06
    Description: This study introduces an experimental regional assimilation configuration for a 4D ensemble–variational (4D-EnVar) deterministic weather prediction system. A total of 16 assimilation experiments covering July 2014 are presented to assess both experimental regional climatological background error covariances and updates in the treatment of flow-dependent error covariances. The regional climatological background error covariances are estimated using statistical correlations between variables instead of using balance operators. These error covariance estimates allow the analyses to fit more closely with the assimilated observations than when using the lower-resolution global background error covariances (due to shorter correlation scales), and the ensuing forecasts are significantly improved. The use of ensemble-based background error covariances is also improved by reducing vertical and horizontal localization length scales for the flow-dependent background error covariance component. Also, reducing the number of ensemble members employed in the deterministic analysis (from 256 to 128) reduced computational costs by half without degrading the accuracy of analyses and forecasts. The impact of the relative contributions of the climatological and flow-dependent background error covariance components is also examined. Results show that the experimental regional system benefits from giving a lower (higher) weight to climatological (flow-dependent) error covariances. When compared with the operational assimilation configuration of the continental prediction system, the proposed modifications to the background error covariances improve both surface and upper-air RMSE scores by nearly 1%. Still, the use of a higher-resolution ensemble to estimate flow-dependent background error covariances does not yet provide added value, although it is expected to allow for a better use of dense observations in the future.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...