ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (3)
Collection
Years
Year
  • 1
    Publication Date: 2020-01-01
    Electronic ISSN: 2639-6696
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-17
    Description: After strip mining, soils typically suffer from compaction, low nutrient availability, loss of soil organic carbon, and a compromised soil microbial community. Prairie restorations can improve ecosystem services on former agricultural lands, but prairie restorations on mine lands are relatively under-studied. This study investigated the impact of prairie restoration on mine lands, focusing on the plant community and soil properties. In southeast Ohio, 305 ha within a ~2000 ha area of former mine land was converted to native prairie through herbicide and planting between 1999–2016. Soil and vegetation sampling occurred from 2016–2018. Plant community composition shifted with prairie age, with highest native cover in the oldest prairie areas. Prairie plants were more abundant in older prairies. The oldest prairies had significantly more soil fungal biomass and higher soil microbial biomass. However, many soil properties (e.g., soil nutrients, β-glucosoidase activity, and soil organic carbon), as well as plant species diversity and richness trended higher in prairies, but were not significantly different from baseline cool-season grasslands. Overall, restoration with prairie plant communities slowly shifted soil properties, but mining disturbance was still the most significant driver in controlling soil properties. Prairie restoration on reclaimed mine land was effective in establishing a native plant community, with the associated ecosystem benefits.
    Electronic ISSN: 2073-445X
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-12
    Description: The Sahel is an ecologically vulnerable region where increasing populations with a concurrent increase in agricultural intensity has degraded soils. Agroforestry offers an approach to remediate these landscapes. A largely unrecognized agroforestry resource in the Sahel are the native shrubs, Piliostigma reticulatum, and Guiera senegalensis that to varying degrees already coexist with row crops. These shrubs improve soil quality, redistribute water from the deep soil to the surface (hydraulic lift), and can improve crop growth. However, little information is available on whether these shrubs affect spatial and temporal dynamics of microbial communities. Therefore, the objective of this study was to determine microbial composition and activity in the wet and dry seasons of soil in the: shrub rhizosphere (RhizS), inter-root zone (IntrS), and outside the influence of shrub soil (OutS) for both G. senegalensis and P. reticulatum in Senegal. A 3 × 2 factorial field experiment was imposed at two locations (490 and 700 mm annual rainfall with G. senegalensis and P. reticulatum, respectively), that had the soil sampling treatments of three locations (RhizS, IntrS, and OutS) and two seasons (wet and dry). Soils were analyzed for: microbial diversity (DGGE with bacterial 16S or fungal 28S rRNA gene sequences phospholipids fatty acid, PLFA); enzyme activities; microbial biomass carbon (MBC); and nitrogen (N) mineralization potential. For the DGGE profiling, the bacterial community responded more to the rhizosphere effect, whereas, the fungal community was more sensitive to season. PLFA, MBC, enzyme activities and inorganic N were significantly higher in both seasons for the RhizS. The presence of shrubs maintained rhizosphere microbial communities and activity during the dry season. This represents a paradigm shift for semi-arid environments where logically it would be expected to have no microbial activity in the extended dry season. In contrast this study has shown this is not the case that rather the presence of shrub roots maintained the microbial community in the dry season most likely due to hydraulic lift and root exudates. This has implications when these shrubs are in cropped fields in that decomposition and mineralization of nutrients can proceed in the dry season. Thus, enabling accumulation of plant available nutrients during the dry season for uptake by crops in the rainy season.
    Electronic ISSN: 2571-581X
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...