ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (10)
Collection
Years
Year
  • 1
    Publication Date: 2020-06-20
    Electronic ISSN: 2152-3878
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-31
    Description: The effects of biochar on plant growth vary depending on the applied biochar type, study site environmental conditions, microbial species, and plant–microbial interactions. The objectives of the present study were therefore to assess 1) the response of growth parameters of lupin and root disease incidence to the application of three biochar types in a loamy sandy soil, and 2) the role of endophytic bacteria in biological control of root rot disease incidence in lupin after the amendment of soil with different biochar types. As biochar types we tested (i) hydrochar (HTC) from maize silage, (ii) pyrolysis char from maize (MBC), and (iii) pyrolysis char from wood (WBC) at three different concentrations (1%, 2%, and 3% of char as soil amendments). There were no significant effects in lupin shoot and root growth in soils amended with WBC at any of the concentrations. MBC did not affect plant growth except for root dry weight at 2% MBC. HTC char at 2% concentration, significantly increased the root dry weight of lupin by 54–75%, and shoot dry weight by 21–25%. Lupin plants grown in soil amended with 2% and 3% WBC and MBC chars showed 40–50% and 10–20% disease symptoms, respectively. Plants grown in soil without biochar and with HTC char were healthy, and no disease incidence occurred. Pseudomonas putida L2 and Stenotrophomonas pavanii L8 isolates demonstrated a disease reduction compared to un-inoculated plants under MBC and WBC amended soil that was infested with Fusarium solani.
    Electronic ISSN: 2076-2607
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-13
    Description: Two-year field experiments were conducted at Tamil Nadu Rice Research Institute, Aduthurai, Tamil Nadu, India, to evaluate the effect of continuous flooding (CF) and alternate wetting and drying (AWD) irrigation strategies on rice grain yield and greenhouse gas emissions from double-cropping paddy rice. Field observation results showed that AWD irrigation was found to reduce the total seasonal methane (CH4) emission by 22.3% to 56.2% compared with CF while maintaining rice yield. By using the observed two-year field data, validation of the DNDC-Rice model was conducted for CF and AWD practices. The model overestimated rice grain yield by 24% and 29% in CF and AWD, respectively, averaged over the rice-growing seasons compared to observed values. The simulated seasonal CH4 emissions for CF were 6.4% lower and 4.2% higher than observed values and for AWD were 9.3% and 12.7% lower in the summer and monsoon season, respectively. The relative deviation of simulated seasonal nitrous oxide (N2O) emissions from observed emissions in CF were 27% and −35% and in AWD were 267% and 234% in the summer and monsoon season, respectively. Although the DNDC-Rice model reasonably estimated the total CH4 emission in CF and reproduced the mitigation effect of AWD treatment on CH4 emissions well, the model did not adequately predict the total N2O emission under water-saving irrigation. In terms of global warming potential (GWP), nevertheless there was a good agreement between the simulated and observed values for both CF and AWD irrigations due to smaller contributions of N2O to the GWP compared with that of CH4. This study showed that the DNDC-Rice model could be used for the estimation of CH4 emissions, the primary source of GWP from double-cropping paddy rice under different water management conditions in the tropical regions.
    Electronic ISSN: 2077-0472
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-28
    Description: Hydrochar is rich in nutrients and may provide a favorable habitat or shelter for bacterial proliferation and survival. Therefore, in this study, we investigate the efficiency of a hydrochar-based rhizobial inoculant (Bradyrhizobium japonicum) on the symbiotic performance of soybean under both greenhouse and field conditions. There were positive and significant effects of hydrochar-based inoculation on the root and shoot growth of soybean as compared to uninoculated plants grown under irrigated and drought conditions. The drought stress significantly inhibited the symbiotic performance of rhizobia with soybean. Soybean inoculated with hydrochar-based B. japonicum produced twofold more nodules under drought stress conditions as compared to plants inoculated with a commercial preparation/inoculant carrier B. japonicum (HISTICK). The N concentration of inoculated plants with hydrochar-based B. japonicum was by 31% higher than that of un-inoculated plants grown in pots and by 22% for HISTICK. Furthermore, the soybean treated with hydrochar-based B. japonicum showed higher grain yield of 29% under irrigated conditions and 40% higher under rainfed condition compared to un-inoculated plants. In conclusion, the obtained results proved the potential of hydrochar-based B. japonicum inoculant for soybean in terms of increased symbiotic performance and agronomic traits, especially under rainfed conditions.
    Electronic ISSN: 2076-2607
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-03
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-21
    Description: Radioactive cesium (137Cs) in distinct soil fractions provides key information to its bioavailability, and therefore determining the effect of soil characteristics and land use types on existing fractions of 137Cs in soils is important for predicting future 137Cs mobility in Fukushima. Thus, the objective of this study was to investigate the influence of soil characteristics and land use types on sequentially extracted fractions of 137Cs in Fukushima. In this study, five coniferous forest soils, eight arable soils, and eight paddy rice soils were sampled in 2012 and 2013. The 137Cs in the soils were separated into four fractions; water-soluble, exchangeable, organic matter-bound and residual fractions. More than 90% of the soil 137Cs fraction for arable and paddy rice soils was found in the residual fraction, implying significantly reduced bioavailable 137Cs with higher fixation. In contrast, forest soils measured higher exchangeable and organic matter-bound fractions of 5%–33% and 9%–44%, respectively, implying future 137Cs mobility in the forest ecosystem. Correlation analysis showed a significant negative correlation (p 〈 0.05) between the organic matter fraction and residual fraction in both arable and paddy rice soils. There was a significant positive correlation (p 〈 0.05) for both exchangeable and residual fractions with cation exchange capacity (CEC), total carbon (TC) and total nitrogen (TN) values in arable soils. Organic matter content influenced both exchangeable and residual fractions. It was not clear whether organic matter played a direct role in 137Cs fixation or mobility in the agricultural soils. In paddy rice soils, the organic matter fraction showed a significant negative correlation with TC and TN values. Soil pH was significantly negatively correlated (p 〈 0.05) with both water-soluble and residual fractions in forest soils but positively (p 〈 0.1) with the organically bound 137Cs fraction.
    Electronic ISSN: 2076-3298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-13
    Description: To compare how different analytical methods explain crop yields from a long-term field experiment (LTFE), we analyzed the grain yield of winter wheat (WW) under different fertilizer applications in Müncheberg, Germany. An analysis of variance (ANOVA), linear mixed-effects model (LMM), and MP5 regression tree model were used to evaluate the grain yield response. All the methods identified fertilizer application and environmental factors as the main variables that explained 80% of the variance in grain yields. Mineral nitrogen fertilizer (NF) application was the major factor that influenced the grain yield in all methods. Farmyard manure slightly influenced the grain yield with no NF application in the ANOVA and M5P regression tree. While sources of environmental factors were unmeasured in the ANOVA test, they were quantified in detail in the LMM and M5P model. The LMM and M5P model identified the cumulative number of freezing days in December as the main climate-based determinant of the grain yield variation. Additionally, the temperature in October, the cumulative number of freezing days in February, the yield of the preceding crop, and the total nitrogen in the soil were determinants of the grain yield in both models. Apart from the common determinants that appeared in both models, the LMM additionally showed precipitation in June and the cumulative number of days in July with temperatures above 30 °C, while the M5P model showed soil organic carbon as an influencing factor of the grain yield. The ANOVA results provide only the main factors affecting the WW yield. The LMM had a better predictive performance compared to the M5P, with smaller root mean square and mean absolute errors. However, they were richer regressors than the ANOVA. The M5P model presented an intuitive visualization of important variables and their critical thresholds, and revealed other variables that were not captured by the LMM model. Hence, the use of different methods can strengthen the statement of the analysis, and thus, the co-use of the LMM and M5P model should be considered, especially in large databases involving multiple variables.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-02
    Description: While intercropping is known to have positive effects on crop productivity, it is unclear whether the effects of mixing species start at the early plant stage, that is, during germination. We tested whether the germination of two legume species, alsike clover and black medic, characterized by a contrasting response to water availability and temperature is affected by mixing. We set up four experiments in each of which we compared a 1:1 mixture against the two monocultures, and combined this with various other experimental factors. These additional factors were (i) varied seed densities (50%, 100% and 150% of a reference density) in two field trials in 2016 and 2017, (ii) varied seed densities (high and low) and water availability (six levels, between 25% and 100% of water holding capacity (WHC)) in a greenhouse pot trial, (iii) varied seed spacing in a climate chamber, and (iv) varied temperatures (12 °C, 20 °C and 28 °C) and water availability (four levels between 25% and 100% of WHC) in a climate chamber. Across all experiments, the absolute mixture effects (AME) on germination ranged between −9% and +11%, with a median of +1.3%. Within experiments, significant mixture effects were observed, but the direction of these effects was inconsistent. In the field, AME on germination was significantly negative at some of the tested seed densities. A positive AME was observed in the climate chamber at 12 °C, and the mean AME decreased with increasing temperature. Higher density was associated with decreased germination in the field, indicating negative interaction through competition or allelopathy, among seedlings. Our findings indicate that interaction among seeds in species mixtures may be ongoing during germination, but that the direction of the mixture effect is affected by complex interactions with abiotic and biotic factors.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-06
    Description: To analyse the 137Cs distribution and migration under various fractions of organic matter layers, this study investigated easily recognizable, originally shaped organic L-fractions, and not easily recognizable, early fermented and fragmented organic F-fractions, of both oak (Quercus serrata) and cedar (Cryptomeria japonica) sampled from Osawa watershed sites at Nihonmatsu City, Fukushima Prefecture, Japan. The organic materials were put on top of soil columns from Field Museum (FM) Tamakyuryo in Hachioji City, Tokyo. The 137Cs vertical distribution in forest soil profiles was analyzed using the relaxation mass depth, ho (kg m−2). Soil columns with both L and F- organic layer fractions of both oak and cedar, labelled as Oak-L, Oak-F, Cedar-L and Cedar-F with four replications (n = 16), were set up by the laboratory column-based method and kept under five months’ incubation period. Soil columns after incubation were sampled at depths of 0–1 cm, 1–2 cm, 2–5 cm and 5–10 cm. Results of 137Cs inventory in the organic fractions showed that 86% (oak and cedar) of the total organic layer fractions 137Cs inventory accumulated within the F-layer, indicating that the transformation of litter is a huge source for potentially mobile 137Cs, especially the oak F-layer (67% 137Cs inventory) and further continuous transfer into the forest soil mineral layers. A higher ho in L treated soils (Oak-L and Cedar-L) compared to the F treatments implied that the low 137Cs amounts penetrated faster and deeper due to their water-soluble nature. Furthermore, Cedar-F showed a higher ho of 24.3 kg m−2 than Oak-F of ho, 14.0 kg m−2, and a significant positive relationship between 137Cs retention and total carbon (TC) (p 〈 0.05) suggested the influence of soil organic matter on 137Cs penetration and retention. The C/N (carbon nitrogen ratio) results revealed that organic matter fractions of high C/N including 137Cs, as observed in Cedar-F, in which decomposition does not advance, penetrates soil depths while the organic matter fraction of low C/N, observed in Oak-F, showed that decomposition advanced to release 137Cs which was held by adsorption unto the RIP (radiocesium interception potential) of soil surface. In addition, infiltration by water as a transportation process was suggested to largely influence the downward migration and retention of 137Cs at lower depths of Cedar-F.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-08
    Description: Licorice (Glycyrrhiza uralensis Fisch.) is a salt and drought tolerant legume suitable for rehabilitating abandoned saline lands, especially in dry arid regions. We hypothesized that soil amended with maize-derived biochar might alleviate salt stress in licorice by improving its growth, nutrient acquisition, and root system adaptation. Experiments were designed to determine the effect of different biochar concentrations on licorice growth parameters, acquisition of C (carbon), nitrogen (N), and phosphorus (P) and on soil enzyme activities under saline and non-saline soil conditions. Pyrolysis char from maize (600 °C) was used at concentrations of 2% (B2), 4% (B4), and 6% (B6) for pot experiments. After 40 days, biochar improved the shoot and root biomass of licorice by 80 and 41% under saline soil conditions. However, B4 and B6 did not have a significant effect on shoot growth. Furthermore, increased nodule numbers of licorice grown at B4 amendment were observed under both non-saline and saline conditions. The root architectural traits, such as root length, surface area, project area, root volume, and nodulation traits, also significantly increased by biochar application at both B2 and B4. The concentrations of N and K in plant tissue increased under B2 and B4 amendments compared to the plants grown without biochar application. Moreover, the soil under saline conditions amended with biochar showed a positive effect on the activities of soil fluorescein diacetate hydrolase, proteases, and acid phosphomonoesterases. Overall, this study demonstrated the beneficial effects of maize-derived biochar on growth and nutrient uptake of licorice under saline soil conditions by improving nodule formation and root architecture, as well as soil enzyme activity.
    Electronic ISSN: 2223-7747
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...