ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • basal roughness  (1)
  • calcite fibre  (1)
  • 2020-2022  (2)
Collection
Years
  • 2020-2022  (2)
Year
  • 1
    Publication Date: 2021-07-21
    Description: Thecideide brachiopods are an anomalous group of invertebrates. In this study, we discuss the evolution of thecideide brachiopods from the Triassic to the Holocene and base our results and conclusions on microstructure and texture measurements gained from electron backscatter diffraction (EBSD). In fossil and Recent thecideide shells, we observe the following mineral units: (1) nanometric to small granules; (2) acicles; (3) fibres; (4) polygonal crystals; and (5) large roundish crystals. We trace for thecideide shells the change of mineral unit characteristics such as morphology, size, orientation, arrangement and distribution pattern. Triassic thecideide shells contain extensive sections formed of fibres interspersed with large, roundish crystals. Upper Cretaceous to Pleistocene thecideide hard tissues consist of a matrix of minute to small grains reinforced by acicles and small polygonal crystals. Recent thecideide species form their shell of mineral units that show a wide range of shapes, sizes and arrangements. We find from Late Triassic to Recent a gradual decrease in mineral unit size, regularity of mineral unit morphology and orientation and the degree of calcite co‐orientation. While crystallite co‐orientation is the highest for fibrous microstructures, it is strikingly low for taxa that form their shell out of nanogranular to acicular mineral units. Our results indicate that Upper Jurassic species represent transitional forms between ancient taxa with fibrous shells and Recent forms that construct their shells of acicles and granules. We attribute the observed changes in microstructure and texture to be an adaptation to a different habitat and lifestyle associated with cementation to hard substrates.
    Description: H2020 Marie Skłodowska‐Curie Actions http://dx.doi.org/10.13039/100010665
    Description: WOA Institution: LUDWIG‐MAXIMILIANS‐UNIVERSITAET MUNCHEN
    Keywords: 560 ; Brachiopoda ; calcite crystals ; calcite fibre ; EBSD ; shell microstructure evolution ; thecideides
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-21
    Description: The ice stream geometry and large ice surface velocities at the onset region of the Northeast Greenland Ice Stream (NEGIS) are not yet well reproduced by ice sheet models. The quantification of basal sliding and a parametrization of basal conditions remains a major gap. In this study, we assess the basal conditions of the onset region of the NEGIS in a systematic analysis of airborne ultra‐wideband radar data. We evaluate basal roughness and basal return echoes in the context of the current ice stream geometry and ice surface velocity. We observe a change from a smooth to a rougher bed where the ice stream widens, and a distinct roughness anisotropy, indicating a preferred orientation of subglacial structures. In the upstream region, the excess ice mass flux through the shear margins is evacuated by ice flow acceleration and along‐flow stretching of the ice. At the downstream part, the generally rougher bed topography correlates with a decrease in flow acceleration and lateral variations in ice surface velocity. Together with basal water routing pathways, this hints to two different zones in this part of the NEGIS: the upstream region collecting water, with a reduced basal traction, and downstream, where the ice stream is slowing down and is widening on a rougher bed, with a distribution of basal water toward the shear margins. Our findings support the hypothesis that the NEGIS is strongly interconnected to the subglacial water system in its onset region, but also to the subglacial substrate and morphology.
    Description: Plain Language Summary: The Northeast Greenland Ice Stream (NEGIS) transports a large amount of ice mass from the interior of the Greenland Ice Sheet (GrIS) toward the ocean. The extent and geometry of the NEGIS are difficult to reproduce in current ice sheet models because many boundary conditions, such as the properties of the ice base, are not well known. In this study, we present new characteristics of the ice base from the onset region of the NEGIS derived by airborne radio‐echo sounding data. Our data yield a smooth and increasingly lubricated bed in the upstream part of our survey area, which enables the ice to accelerate. Our results confirm the hypothesis that the position of the ice stream boundaries are coupled to the subglacial hydrology system.
    Description: Key Points: Basal roughness at the onset of the NEGIS hints to a geomorphic anisotropy and a change in the geomorphological regime. Basal water is funneled into the ice stream upstream and redistributed toward the shear margins further downstream. A smooth and progressively lubricated bed reduces basal traction and favors the acceleration of the NEGIS at its onset.
    Description: A. P. Møller Foundation
    Description: US National Science Foundation
    Description: Alfred Wegener Institute
    Description: National Institute of Polar Research and Arctic Challenge for Sustainability
    Description: University of Bergen and Bergen Research Foundation
    Description: Swiss National Science Foundation
    Description: French Polar Institute Paul‐Emile Victor
    Description: Chinese Academy of Sciences and Beijing Normal University
    Description: NASA Operation IceBridge
    Description: NSF
    Keywords: 551.34 ; basal roughness ; bed conditions ; Greenland Ice Sheet ; ice stream ; Northeast Greenland Ice Stream ; radio‐echo sounding
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...