ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • tourmaline  (2)
  • Aluminium oxide; Calcium oxide; Central America; Chlorine; Chromium(III) oxide; Depth, continental, geothermobarometry; Depth, oceanic, geothermobarometry; E012; E014; Eruption; Event label; Fluorine; Fugacity of oxygen, logarithm; Fugacity of oxygen, logarithm, uncertainty; Fugacity of oxygen, relative; Geochemistry; geochronology; GLASS; Iron oxide, FeO; Magnesium oxide; Manganese oxide; Melt water content; Melt water content, uncertainty; Potassium oxide; Pressure, calculated; Pressure, calculated, uncertainty; ROCK; Rock sample; Sample code/label; Sample ID; Silicon dioxide; Sodium oxide; TB_E029; TB_E032; TB_E042; TB_E17-4; Temperature, calculated; Temperature, calculated, uncertainty; Titanium dioxide; Total; zircon
  • Birimian Supergroup
  • 2020-2022  (2)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2021-11-03
    Description: Abstract
    Description: Analyzing the chemical composition of rocks and minerals is an important tool for exploring and understanding mineral resources. Typically, hydrothermal ore deposits are characterized by primary alteration halos. At the world-class Panasqueira W-Sn-Cu deposit, the hydrothermal alteration of the wall rocks produced concentric zones with progressively greater distance from the veins, consisting of a proximal tourmaline-quartz-muscovite zone and a distal muscovite-quartz zone.Tourmaline and mica are ubiquitous minerals at Panasqueira W-Sn-Cu and coexist in many other hydrothermal ore deposits worldwide. Both minerals are well-known to host variable amounts of trace elements and to have potential as pathfinder minerals as well as fluid monitors.We analyzed major, minor and trace element contents of altered and unaltered metasediments from the Panasqueira by XRF and ICP-MS and tourmaline and white mica major, minor and trace element compositions by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in previously well-characterized samples from different locations/setting in the mine (greisen, vein-selvages, wall-rock alteration zones, fault zone, and late vugs).Detailed information about the samples used, the location, and general geological background of the samples, and the analytical method is provided in the data description "2020-002_Codeco-et-al_data-description.pdf ".Detailed information about the the samples used, the location and general geological background of the samples and the analytical methods are provided in the data description file (2020-002_Codeco-et-al_data-description.pdf).
    Description: Other
    Description: Panasqueira is a world-class W-Sn-Cu lode-type deposit located in the Castelo Branco district (Beira Baixa, central Portugal). The ore deposit consists of a swarm of sub-horizontal veins associated with a Late-Variscan S-type granite and enclosed by a metasedimentary unit of Late Ediacaran to Early Cambrian age (e.g., Kelly and Rye, 1979; Romão et al., 2013).The veins are mainly composed of gangue quartz, muscovite and minor carbonates, apatite, topaz,  topaz, fluorite, tourmaline, rutile, ilmenite, arsenopyrite, sphalerite, pyrite, marcasite, stannite, and pyrrhotite. Mineralization of wolframite, chalcopyrite, and cassiterite is predominantly hosted in veins with minor stringers and lenses of sulfide minerals in the wall rocks (e.g., Kelly and Rye, 1979; Polya, 1989; Polya et al., 2000). Although there is a strong variation in the vein mineralogy, typically, the quartz vein-filling is rimmed by a muscovite selvage up to 4-5 cm thick. The hydrothermal alteration produced a 2 to 30 cm thick tourmaline-rich alteration halo in the metasedimentary host rock (Bussink, 1984).
    Description: Methods
    Description: The analyzed samples are described by Codeço et al. (2017), Codeço et al. (2019), and Codeço et al. (in review). These studies discuss the chemical (major, minor, and trace elements) and boron-isotopic compositions of tourmaline and white mica, and whole-rock chemistry of altered and unaltered metasediments. Further details on sample description can be found in the folder "2020-002_Codeco-et-al_Samples" and the analytical methods are described in " 2020-002_Codeco-et-al_data-description.pdf".
    Keywords: Geochemistry ; hydrothermal alteration ; whole-rock chemistry ; tourmaline ; white mica ; muscovite ; LA-ICP-MS ; trace elements ; Panasqueira ; magmatic-hydrothermal systems ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 IGNEOUS ROCKS 〉 IGNEOUS ROCK PHYSICAL/OPTICAL PROPERTIES 〉 COMPOSITION/TEXTURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METAMORPHIC ROCKS 〉 METAMORPHIC ROCK PHYSICAL/OPTICAL PROPERTIES 〉 COMPOSITION/TEXTURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL PHYSICAL/OPTICAL PROPERTIES 〉 COMPOSITION/TEXTURE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-30
    Description: Three tourmaline reference materials sourced from the Harvard Mineralogical and Geological Museum (schorl 112566, dravite 108796 and elbaite 98144), which are already widely used for the calibration of in situ boron isotope measurements, are characterised here for their oxygen and lithium isotope compositions. Homogeneity tests by secondary ion mass spectrometry (SIMS) showed that at sub‐nanogram test portion masses, their 18O/16O and 7Li/6Li isotope ratios are constant within ± 0.27‰ and ± 2.2‰ (1s), respectively. The lithium mass fractions of the three materials vary over three orders of magnitude. SIMS homogeneity tests showed variations in 7Li/28Si between 8% and 14% (1s), which provides a measure of the heterogeneity of the Li contents in these three materials. Here, we provide recommended values for δ18O, Δ’17O and δ7Li for the three Harvard tourmaline reference materials based on results from bulk mineral analyses from multiple, independent laboratories using laser‐ and stepwise fluorination gas mass spectrometry (for O), and solution multi‐collector inductively coupled plasma‐mass spectroscopy (for Li). These bulk data also allow us to assess the degree of inter‐laboratory bias that might be present in such data sets. This work also re‐evaluates the major element chemical composition of the materials by electron probe microanalysis and investigates these presence of a chemical matrix effect on SIMS instrumental mass fractionation with regard to δ18O determinations, which was found to be 〈 1.6‰ between these three materials. The final table presented here provides a summary of the isotope ratio values that we have determined for these three materials. Depending on their starting mass, either 128 or 512 splits have been produced of each material, assuring their availability for many years into the future.
    Description: Key Points: Three widely available tourmaline reference materials are characterized for δ7Li, δ17O and δ18O, while new EPMA and SIMS measurements refine their major element compositions. SIMS data document homogeneity for these isotope ratios. SIMS matrix effect causes bias of 1.9‰ between elbaite and schorl, whereas silicate glass shows even more severe bias.
    Description: U.S. National Science Foundation
    Description: Natural Environment Research Council http://dx.doi.org/10.13039/501100000270
    Description: US Department of Energy http://dx.doi.org/10.13039/100000015
    Keywords: 551.9 ; tourmaline ; lithium isotopes ; oxygen isotopes ; reference materials ; SIMS ; matrix effect
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...