ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Management  (2)
  • 551.51  (1)
  • 2020-2022  (3)
Collection
Years
  • 2020-2022  (3)
Year
  • 1
    Publication Date: 2021-07-21
    Description: Throughout spring and summer 2020, ozone stations in the northern extratropics recorded unusually low ozone in the free troposphere. From April to August, and from 1 to 8 kilometers altitude, ozone was on average 7% (≈4 nmol/mol) below the 2000–2020 climatological mean. Such low ozone, over several months, and at so many stations, has not been observed in any previous year since at least 2000. Atmospheric composition analyses from the Copernicus Atmosphere Monitoring Service and simulations from the NASA GMI model indicate that the large 2020 springtime ozone depletion in the Arctic stratosphere contributed less than one‐quarter of the observed tropospheric anomaly. The observed anomaly is consistent with recent chemistry‐climate model simulations, which assume emissions reductions similar to those caused by the COVID‐19 crisis. COVID‐19 related emissions reductions appear to be the major cause for the observed reduced free tropospheric ozone in 2020.
    Description: Plain Language Summary: Worldwide actions to contain the COVID‐19 virus have closed factories, grounded airplanes, and have generally reduced travel and transportation. Less fuel was burnt, and less exhaust was emitted into the atmosphere. Due to these measures, the concentration of nitrogen oxides and volatile organic compounds (VOCs) decreased in the atmosphere. These substances are important for photochemical production and destruction of ozone in the atmosphere. In clean or mildly polluted air, reducing nitrogen oxides and/or VOCs will reduce the photochemical production of ozone and result in less ozone. In heavily polluted air, in contrast, reducing nitrogen oxides can increase ozone concentrations, because less nitrogen oxide is available to destroy ozone. In this study, we use data from three types of ozone instruments, but mostly from ozonesondes on weather balloons. The sondes fly from the ground up to 30 kilometers altitude. In the first 8 km, we find significantly reduced ozone concentrations in the northern extratropics during spring and summer of 2020, less than in any other year since at least 2000. We suggest that reduced emissions due to the COVID‐19 crisis have lowered photochemical ozone production and have caused the observed ozone reductions in the troposphere.
    Description: Key Points: In spring and summer 2020, stations in the northern extratropics report on average 7% (4 nmol/mol) less tropospheric ozone than normal Such low tropospheric ozone, over several months, and at so many sites, has not been observed in any previous year since at least 2000 Most of the reduction in tropospheric ozone in 2020 is likely due to emissions reductions related to the COVID‐19 pandemic
    Description: NASA | Earth Sciences Division (NASA Earth Science Division) http://dx.doi.org/10.13039/100014573
    Description: Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (NSERC) http://dx.doi.org/10.13039/501100000038
    Description: Australian Research Council
    Description: Fonds De La Recherche Scientifique ‐ FNRS (FNRS) http://dx.doi.org/10.13039/501100002661
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Wirtschaft und Energie (BMWi) http://dx.doi.org/10.13039/501100006360
    Description: NASA | Earth Sciences Division (NASA Earth Science Division) http://dx.doi.org/10.13039/100014573
    Keywords: 551.51 ; COVID‐19 ; emissions ; ozone ; troposphere
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/15103 | 403 | 2014-05-28 03:40:07 | 15103 | United States National Marine Fisheries Service
    Publication Date: 2021-07-02
    Description: Fecundity (F, number of brooded eggs) and egg size were estimated for Hawaiian spiny lobster (Panulirus marginatus) at Necker Bank, North-western Hawaiian Islands (NWHI), in June 1999, and compared with previous (1978–81, 1991) estimates. Fecundity in 1999 was best described by the power equations F = 7.995 CL 2.4017, where CL is carapace length in mm (r2=0.900), and F = 5.174 TW 2.758, where TW is tail width in mm (r2=0.889) (both n=40; P〈 0.001). Based on a log-linear model ANCOVA, size-specific fecundity in 1999 was 18% greater than in 1991, which in turn was 16% greater than during 1978–81. The additional increase in size-specific fecundity observed in 1999 is interpreted as evidence for further compensatory response to decreased lobster densities and increased per capita food resources that have resulted either from natural cyclic declines in productivity, high levels of harvest by the commercial lobster trap fishery, or both.
    Keywords: Ecology ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 22-31
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/15196 | 403 | 2014-05-30 07:16:08 | 15196 | United States National Marine Fisheries Service
    Publication Date: 2021-07-04
    Keywords: Biology ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 128-133
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...