ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 551.1  (1)
  • 551.9  (1)
  • Subduction
  • 2020-2022  (2)
  • 1
    Publication Date: 2021-06-30
    Description: Here we report on a set of six apatite reference materials (chlorapatites MGMH#133648, TUBAF#38 and fluorapatites MGMH#128441A, TUBAF#37, 40, 50) which we have characterised for their chlorine isotope ratios; these RMs span a range of Cl mass fractions within the apatite Ca10(PO4)6(F,Cl,OH)2 solid solution series. Numerous apatite specimens, obtained from mineralogical collections, were initially screened for 37Cl/35Cl homogeneity using SIMS followed by δ37Cl characterisation by gas source mass spectrometry using both dual‐inlet and continuous‐flow modes. We also report major and key trace element compositions as determined by EPMA. The repeatability of our SIMS results was better than ± 0.10% (1s) for the five samples with 〉 0.5% m/m Cl and ± 0.19% (1s) for the low Cl abundance material (0.27% m/m). We also observed a small, but significant crystal orientation effect of 0.38% between the mean 37Cl/35Cl ratios measured on three oriented apatite fragments. Furthermore, the results of GS‐IRMS analyses show small but systematic offset of δ37ClSMOC values between the three laboratories. Nonetheless, all studied samples have comparable chlorine isotope compositions, with mean 103δ37ClSMOC values between +0.09 and +0.42 and in all cases with 1s ≤ ± 0.25.
    Description: Key Points: Six apatite reference materials having various Cl mass fractions were characterised for chlorine isotope ratios by SIMS and three GS‐IRMS laboratories. A small, but significant, crystal orientation effect was recorded by SIMS analyses. Correlation of instrumental mass fractionation factor with Cl mass fraction is visible along the apatite solid solution series.
    Description: Narodowe Centrum Nauki
    Description: Deutscher Akademischer Austauschdienst
    Description: Helmholtz Recruiting Initiative
    Description: Institute of Geological Sciences, Polish Academy of Sciences
    Keywords: 551.9 ; chlorine isotopes ; apatite ; matrix effect ; crystal orientation effect ; secondary ion mass spectrometry
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-03
    Description: Subduction zone processes and the resulting geometries at depth are widely studied by large‐scale geophysical imaging techniques. The subsequent interpretations are dependent on information from surface exposures of fossil subduction and collision zones, which help to discern probable lithologies and their structural relationships at depth. For this purpose, we collected samples from Holsnøy in the Bergen Arcs of western Norway, which constitutes a well‐preserved slice of continental crust, deeply buried and partially eclogitized during Caledonian collision. We derived seismic properties of both the lower crustal granulite‐facies protolith and the eclogite‐facies shear zones by performing laboratory measurements on cube‐shaped samples. P and S wave velocities were measured in three perpendicular directions, along the principal fabric directions of the rock. Resulting velocities agree with seismic velocities calculated using thermodynamic modeling and confirm that eclogitization causes a significant increase of the seismic velocity. Further, eclogitization results in decreased VP/VS ratios and, when associated with deformation, an increase of the seismic anisotropy due to the crystallographic preferred orientation of omphacite that were obtained from neutron diffraction measurements. The structural framework of this exposed complex combined with the characteristic variations of seismic properties from the lower crustal protolith to the high‐pressure assemblage provides the possibility to detect comparable structures at depth in currently active settings using seismological methods such as the receiver function method.
    Description: Key Points: Eclogitization of continental crust increases seismic velocities (isotropic averages up to 8.21 km/s) and decreases VP/VS ratios by ~0.04. Eclogitization coeval with deformation causes a high P wave anisotropy of up to 9%. Shear zone formation coeval with eclogitization causes changes of the seismic response of the structure.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 551.1 ; subducted continental crust ; seismic properties
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...