ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-04
    Description: Background B-mode ultrasound is one of the most commonly used imaging techniques for evaluating thyroid nodules due to its noninvasive property and excellent performance in terms of discriminating between benign and malignant nodules. However, the accuracy of differential diagnosis strongly depends on the experience of ultrasonographers. In addition to B-mode ultrasound, the elastic mode and contrast-enhanced mode have shown complimentary value in the diagnosis of thyroid nodules. The combination of multiple modes in ultrasonic techniques may effectively undermine diagnostic subjectiveness and improve accuracy. In this study, we evaluated the diagnostic value of combining the three ultrasonic modes for differentiating thyroid cancers. Methods In this retrospective study, we analyzed a total of 196 thyroid nodules with suspected malignancies from 185 patients who gave informed consent. Xi’an Jiaotong University granted ethical approval (No. 2018200) to carry out the study within its facilities. All the patients received ultrasonic examinations with the B mode, elastic mode and contrast-enhanced mode, followed by histopathological confirmation by fine-need aspiration or surgery. A predictive multivariate logistic regression model was selected to integrate the variety of data obtained from the three modes. Results The combination of three ultrasonic techniques for differentiating malignant from benign thyroid nodules showed the highest diagnostic accuracy of 0.985 compared to the B mode alone (0.841) and the two-mode combination. The accuracy of the B mode combined with the elastic technique was 0.954, and the accuracy of the B mode combined with the contrast-enhanced technique was 0.960. Discussion Multimode ultrasonic techniques should be recommended to patients with suspected malignant thyroid nodules in routine clinical practice.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-23
    Description: The genus Ulocladium is thought to be strictly asexual. One of the possible reasons for the lack of sexuality in Ulocladium species is the absence of the stimulus of environmental factors. Sexual reproduction in ascomycetes is controlled by a specific region in the genome referred to as mating-type locus (MAT) that consists of two dissimilar DNA sequences in the mating partners, termed MAT1-1 and MAT1-2 idiomorphs. To identify the response of MAT loci to environmental conditions, the mRNA transcription level of MAT1-1-1 and MAT1-2-1 genes was tested using qRT-PCR under different temperatures (−20 °C, −10 °C, 0 °C, 10 °C, 20 °C, 30 °C and 40 °C), culture medias (CM, OA, HAY, PCA, PDA and V8), photoperiods (24 h light, 24 h dark, 12 h light/12 h dark, 10 h light/14 h dark and 8 h light/16 h dark), and CO2 concentrations (0.03%, 0.5%, 1%, 5%, 10%, 15% and 20%). For obtaining reliable results from qRT-PCR, the most stable internal control gene and optimal number of reference genes for normalization were determined under different treatments. The results showed that there is no universal internal control gene that is expressed at a constant level under different experimental treatments. In comparison to various incubation conditions, the relative expression levels of both MAT genes were significantly increased when fungal mycelia were grown on HAY culture media at 0–10 °C with a light/dark cycle, indicating that temperature, culture media, and light might be the key environmental factors for regulating the sexuality in Ulocladium. Moreover, MAT1-1-1 and MAT1-2-1 genes showed similar expression patterns under different treatments, suggesting that the two MAT genes might play an equally important role in the sexual evolutionary process.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-19
    Description: Starch and sucrose metabolism plays a crucial role in the formation and development of bulbs in bulbous plants. However, these mechanisms remain unclear and unexplored in the corms of Freesia hybrida. Herein, we investigated the dynamics of the major form of carbohydrates and related enzyme activities and profiled the transcriptome of freesia corms at four developmental stages with the aim to reveal the relation between the expression of genes involved in the metabolism of carbohydrates and the accumulation of carbohydrates in corm developmental stages for further exploring the mechanism on the starch and sucrose metabolism regulating the formation and development of corms in F. hybrida. The content of starch, sucrose and soluble sugars followed an overall upward trend across the corm developmental stages. Activities of the adenosine diphosphoglucose pyrophosphorylase, starch branching enzyme and β-amylase generally followed the pattern of the starch and sucrose levels. Activities of sucrose phosphate synthase increased from corm formation till the initial swelling stage and subsequently reached a plateau. Activities of invertase and sucrose synthase peaked at the later rapid swelling stage. These suggested that the starch and sucrose dynamics paralleled corm swelling under the action of metabolic enzymes. A total of 100,999 unigenes were assembled in the transcriptomic analysis, and 44,405 unigenes of them were annotated. Analysis based on Clusters of Orthologous Groups suggested that carbohydrate transport and metabolism (9.34% of the sequences) was prominent across the corm developmental process. In total 3,427 differentially expressed genes (DEGs) were identified and the enrichment analysis detected starch and sucrose metabolism as a critical pathway in corm development, especially at the rapid swelling stage. Further, DEGs encoding key carbohydrate-metabolizing enzymes were identified and correlated to enzyme activities and carbohydrate accumulation. The results construct a valuable resource pool for further molecular-level studies, which are helpful for metabolic regulation of carbohydrates and improvement in F. hybrida.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-28
    Description: Background Hepatocellular carcinoma (HCC) is considered to be a malignant tumor with a high incidence and a high mortality. Accurate prognostic models are urgently needed. The present study was aimed at screening the critical genes for prognosis of HCC. Methods The GSE25097, GSE14520, GSE36376 and GSE76427 datasets were obtained from Gene Expression Omnibus (GEO). We used GEO2R to screen differentially expressed genes (DEGs). A protein-protein interaction network of the DEGs was constructed by Cytoscape in order to find hub genes by module analysis. The Metascape was performed to discover biological functions and pathway enrichment of DEGs. MCODE components were calculated to construct a module complex of DEGs. Then, gene set enrichment analysis (GSEA) was used for gene enrichment analysis. ONCOMINE was employed to assess the mRNA expression levels of key genes in HCC, and the survival analysis was conducted using the array from The Cancer Genome Atlas (TCGA) of HCC. Then, the LASSO Cox regression model was performed to establish and identify the prognostic gene signature. We validated the prognostic value of the gene signature in the TCGA cohort. Results We screened out 10 hub genes which were all up-regulated in HCC tissue. They mainly enrich in mitotic cell cycle process. The GSEA results showed that these data sets had good enrichment score and significance in the cell cycle pathway. Each candidate gene may be an indicator of prognostic factors in the development of HCC. However, hub genes expression was weekly associated with overall survival in HCC patients. LASSO Cox regression analysis validated a five-gene signature (including CDC20, CCNB2, NCAPG, ASPM and NUSAP1). These results suggest that five-gene signature model may provide clues for clinical prognostic biomarker of HCC.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...