ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (1)
  • Springer
  • 2020-2022  (1)
Collection
Publisher
  • Oxford University Press  (1)
  • Springer
Years
Year
  • 1
    Publication Date: 2020-05-04
    Description: Seismoelectric measurements are conducted with a synthetic porous rock sample to model an ocean exploration. Two kinds of seismoelectric coupling signals, that is, the interfacial EM wave signal and the coseismic electric signal, have been recorded by the electrodes buried inside a rock sample instead of those located in the fluid or in the solid region near the interface as performed in previous works. These seismoelectric signals are clearly observed and identified with a high signal-to-noise ratio. The characteristics of the measured interfacial EM wave and coseismic electric signals are analysed with the experimental data. We also simulate the seismoelectric conversion fields and make a comparison between the measured and simulated seismoelectric signals. The result shows that the simulated and measured signals match well for both the interfacial EM wave and the coseismic electric fields accompanying the fast P wave. Our results also show that the amplitudes of seismoelectric signals are in the order of tens to hundreds of microvolts with our experimental system. This confirms that the seismoelectric signals are measurable in the interior of the rocks with current measurement techniques, suggesting the seismoelectric measurement to be a potential method for studying characteristics of the material beneath the seafloor.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...