ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (53)
  • Molecular Diversity Preservation International  (52)
  • Oxford University Press  (1)
  • 2020-2022  (53)
  • Geography  (32)
  • Mathematics  (21)
Collection
  • Articles  (53)
Year
Journal
  • 1
    Publication Date: 2020-08-30
    Description: Long-span prestressed double-layer composite torsional reticulated shells have beautiful shapes, which make them a solution widely applied in public buildings requiring long-span structures, such as airports and stadiums. However, once the progressive collapse occurs, this will cause serious issues. There are few studies on the damage assessment of long-span spatial structures under accidental loads. This paper proposes a new dynamic damage evaluation index that takes into account the displacement and the cumulative plastic energy dissipation to evaluate the damage of the long-span prestressed double-layer composite torsional reticulated shell. Sleeve structures were applied to the long-span space structures to study their control effect on structural damage. The equivalent load transient unloading method was used to analyze the dynamic time history of the structure. Results show that the structure suffered severe damage and progressive collapse failure after removing four nodes at different positions near the supports. In the position where the plastic hinges first appear and the position with the maximum displacement, the sleeve structures have a poor damage control effect on the structure. Arranging the two sleeve structures in the position of maximum stress, the damage of the structure can be controlled, thus reducing the severe damage and progressive collapse failure to basic intact damage.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-08
    Description: The existing deep learning methods for point cloud classification are trained using abundant labeled samples and used to test only a few samples. However, classification tasks are diverse, and not all tasks have enough labeled samples for training. In this paper, a novel point cloud classification method for indoor components using few labeled samples is proposed to solve the problem of the requirement for abundant labeled samples for training with deep learning classification methods. This method is composed of four parts: mixing samples, feature extraction, dimensionality reduction, and semantic classification. First, the few labeled point clouds are mixed with unlabeled point clouds. Next, the mixed high-dimensional features are extracted using a deep learning framework. Subsequently, a nonlinear manifold learning method is used to embed the mixed features into a low-dimensional space. Finally, the few labeled point clouds in each cluster are identified, and semantic labels are provided for unlabeled point clouds in the same cluster by a neighborhood search strategy. The validity and versatility of the proposed method were validated by different experiments and compared with three state-of-the-art deep learning methods. Our method uses fewer than 30 labeled point clouds to achieve an accuracy that is 1.89–19.67% greater than existing methods. More importantly, the experimental results suggest that this method is not only suitable for single-attribute indoor scenarios but also for comprehensive complex indoor scenarios.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-26
    Description: Flash floods induced by torrential rainfalls are considered one of the most dangerous natural hazards, due to their sudden occurrence and high magnitudes, which may cause huge damage to people and properties. This study proposed a novel modeling approach for spatial prediction of flash floods based on the tree intelligence-based CHAID (Chi-square Automatic Interaction Detector)random subspace, optimized by biogeography-based optimization (the CHAID-RS-BBO model), using remote sensing and geospatial data. In this proposed approach, a forest of tree intelligence was constructed through the random subspace ensemble, and, then, the swarm intelligence was employed to train and optimize the model. The Luc Yen district, located in the northwest mountainous area of Vietnam, was selected as a case study. For this circumstance, a flood inventory map with 1866 polygons for the district was prepared based on Sentinel-1 synthetic aperture radar (SAR) imagery and field surveys with handheld GPS. Then, a geospatial database with ten influencing variables (land use/land cover, soil type, lithology, river density, rainfall, topographic wetness index, elevation, slope, curvature, and aspect) was prepared. Using the inventory map and the ten explanatory variables, the CHAID-RS-BBO model was trained and verified. Various statistical metrics were used to assess the prediction capability of the proposed model. The results show that the proposed CHAID-RS-BBO model yielded the highest predictive performance, with an overall accuracy of 90% in predicting flash floods, and outperformed benchmarks (i.e., the CHAID, the J48-DT, the logistic regression, and the multilayer perception neural network (MLP-NN) models). We conclude that the proposed method can accurately estimate the spatial prediction of flash floods in tropical storm areas.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-26
    Description: With satellite observed Sea Surface Temperature (SST) accumulated for multiple decades, multi-time scale variabilities of the Indo-Pacific Warm Pool are examined and contrasted in this study by separating it into the Indian Ocean sector and the Pacific Ocean sector. Surface size, zonal center, meridional center, maximum SST and mean SST as the practical warm pool properties are chosen to investigate the warm pool variations for the period 1982–2018. On the seasonal time scale, the oscillation of the Indian Warm Pool is found much more vigorous than the Pacific Warm Pool on size and intensity, yet the interannual variabilities of the Indian Warm Pool and the Pacific Warm Pool are comparable. The Indian Warm Pool has weak interannual variations (3–5 years) and the Pacific Warm Pool has mighty interdecadal variations. The size, zonal movement and mean SST of the Indian Ocean Warm Pool (IW) are more accurate to depict the seasonal variability, and for the Pacific Ocean Warm Pool (PW), the size, zonal and meridional movements and maximum SST are more suitable. On the interannual scale, except for the meridional movements, all the other properties of the same basin have similar interannual variation signals. Following the correlation analysis, it turns out that the Indian Ocean basin-wide index (IOBW) is the most important contributor to the variabilities of both sectors. Lead-lag correlation results show that variation of the Pacific Ocean Warm Pool leads the IOBW and variation of the Indian Ocean Warm Pool is synchronous with the IOBW. This indicates that both sectors of the Indo-Pacific Warm Pool are significantly correlated with basin-wide warming or cooling.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-04-14
    Description: Dynamic multi-criteria decision-making (DMCDM) models have many meaningful applications in real life in which solving indeterminacy of information in DMCDMs strengthens the potential application of DMCDM. This study introduces an extension of dynamic internal-valued neutrosophic sets namely generalized dynamic internal-valued neutrosophic sets. Based on this extension, we develop some operators and a TOPSIS method to deal with the change of both criteria, alternatives, and decision-makers by time. In addition, this study also applies the proposal model to a real application that facilitates ranking students according to attitude-skill-knowledge evaluation model. This application not only illustrates the correctness of the proposed model but also introduces its high potential appliance in the education domain.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-03
    Description: Complex fuzzy theory has strong practical background in many important applications, especially in decision-making support systems. Recently, the Mamdani Complex Fuzzy Inference System (M-CFIS) has been introduced as an effective tool for handling events that are not restricted to only values of a given time point but also include all values within certain time intervals (i.e., the phase term). In such decision-making problems, the complex fuzzy theory allows us to observe both the amplitude and phase values of an event, thus resulting in better performance. However, one of the limitations of the existing M-CFIS is the rule base that may be redundant to a specific dataset. In order to handle the problem, we propose a new Mamdani Complex Fuzzy Inference System with Rule Reduction Using Complex Fuzzy Measures in Granular Computing called M-CFIS-R. Several fuzzy similarity measures such as Complex Fuzzy Cosine Similarity Measure (CFCSM), Complex Fuzzy Dice Similarity Measure (CFDSM), and Complex Fuzzy Jaccard Similarity Measure (CFJSM) together with their weighted versions are proposed. Those measures are integrated into the M-CFIS-R system by the idea of granular computing such that only important and dominant rules are being kept in the system. The difference and advantage of M-CFIS-R against M-CFIS is the usage of the training process in which the rule base is repeatedly changed toward the original base set until the performance is better. By doing so, the new rule base in M-CFIS-R would improve the performance of the whole system. Experiments on various decision-making datasets demonstrate that the proposed M-CFIS-R performs better than M-CFIS.
    Electronic ISSN: 2227-7390
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-06-23
    Description: Earthquakes are unpredictable and potentially destructive natural disasters that take a long time to recover from. Monitoring post-earthquake human activity (HA) is of great significance to recovery and reconstruction work. There is a strong correlation between night-time light (NTL) and HA, which aid in the study of spatiotemporal changes in post-earthquake human activities. However, seasonal and noise impact from National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) data greatly limits their application. To tackle these issues, random noise and seasonal fluctuation of NPP/VIIRS from January 2014 to December 2018 is removed by adopting the seasonal-trend decomposition procedure based on loess (STL). Based on the theory of post-earthquake recovery model, a post-earthquake night-time light piecewise (PNLP) pattern is explored by employing the National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) monthly data. PNLP indicators, including pre-earthquake development rate (kp), recovery rate (kr1), reconstruction rate (kr2), development rate (kd), relative reconstruction rate (krp) and loss (S), are defined to describe the PNLP pattern. Furthermore, the 2015 Nepal earthquake is chosen as a case study and the spatiotemporal changes in different areas are analyzed. The results reveal that: (1) STL is an effective algorithm for obtaining HA trend from the time series of denoising NTL; (2) the PNLP pattern, divided into four phases, namely the emergency phase (EP), recovery phase (RP-1), reconstruction phase (RP-2), and development phase (DP), aptly describes the variation in post-earthquake HA; (3) PNLP indicators are capable of evaluating the recovery differences across regions. The main socio-economic factors affecting the PNLP pattern and PNLP indicators are energy source for lighting, type of building, agricultural economy, and human poverty index. Based on the NPP/VIIRS data, the PNLP pattern can reflect the periodical changes of HA after earthquakes and provide an effective means for the analysis and evaluation of post-earthquake recovery and reconstruction.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-06-22
    Description: Most of today’s secret image sharing (SIS) schemes are based on Shamir’s polynomial-based secret sharing (SS), which cannot recover pixels larger than 250. Many exiting methods of lossless recovery are not perfect, because several problems arise, such as large computational costs, pixel expansion and uneven pixel distribution of shadow image. In order to solve these problems and achieve perfect lossless recovery and efficiency, we propose a scheme based on matrix theory modulo 256, which satisfies ( k , k ) and ( k , k + 1 ) thresholds. Firstly, a sharing matrix is generated by the filter operation, which is used to encrypt the secret image into n shadow images, and then the secret image can be obtained by matrix inverse and matrix multiplication with k or more shadows in the recovery phase. Both theoretical analyses and experiments are conducted to demonstrate the effectiveness of the proposed scheme.
    Electronic ISSN: 2227-7390
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-09-17
    Description: Timely and effective estimation and monitoring of soil moisture (SM) provides not only an understanding of regional SM status for agricultural management or potential drought but also a basis for characterizing water and energy exchange. The apparent thermal inertia (ATI) and Temperature Vegetation Dryness Index (TVDI) are two widely used indices to reflect SM from remote sensing data. While the ATI-based model is routinely used to estimate the SM of bare soil and sparsely vegetated areas, the TVDI-based model is more suitable for areas with dense vegetation coverage. In this study, we present an iteration procedure that allows us to identify optimal Normalized Difference Vegetation Index (NDVI) thresholds for subregions and estimate their relative soil moisture (RSM) using three models (the ATI-based model, the TVDI-based model, and the ATI/TVDI joint model) from 1 January to 31 December 2017, in the Chinese Loess Plateau. The initial NDVI (NDVI0) was first introduced to obtain TVDI value and two other thresholds of NDVIATI and NDVITVDI were designed for dividing the whole area into three subregions (the ATI subregion, the TVDI subregion, and the ATI/TVDI subregion). The NDVI values corresponding to maximum R-values (correlation coefficient) between estimated RSM and in situ RSM measurements were chosen as optimal NDVI thresholds after performing as high as 48,620 iterations with 10 rounds of 10-fold cross-calibration and validation for each period. An RSM map of the whole study area was produced by merging the RSM of each of the three subregions. The spatiotemporal and comparative analysis further indicated that the ATI/TVDI joint model has higher applicability (accounting for 36/38 periods) and accuracy than the ATI-based and TVDI-based models. The highest average R-value between the estimated RSM and in situ RSM measurements was 0.73 ± 0.011 (RMSE—root mean square error, 3.43 ± 0.071% and MAE—mean absolute error, 0.05 ± 0.025) on the 137th day of 2017 (DOY—day of the year, 137). Although there is potential for improved mapping of RSM for the entire Chinese Loess Plateau, the iteration procedure of identifying optimal thresholds determination offers a promising method for achieving finer-resolution and robust RSM estimation in large heterogeneous areas.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-28
    Description: In this study, the characteristics and causes of the seasonal variations in plasma bubble occurrence over the Hong Kong area were investigated using the local Global Navigation Satellite System (GNSS) network. Generally, the occurrences of plasma bubbles were larger in the two equinoxes than in the two solstices. Furthermore, two seasonal asymmetries in plasma bubble occurrence were observed: plasma bubble activity was more frequent in the spring equinox than in the autumn equinox (equinoctial asymmetry), and more frequent in the summer solstice than in the winter solstice (solstitial asymmetry). The equinoctial asymmetry could be explained using the Rayleigh–Taylor (R–T) instability mechanism, due to larger R–T growth rates in the spring equinox than in the autumn equinox. However, the R–T growth rate was smaller in the summer solstice than in the winter solstice, suggesting the R–T instability mechanism was inapplicable to the solstitial asymmetry. Our results showed there were more zonally propagating atmospheric gravity waves (GWs) induced by thunderstorm events over the Hong Kong area in the summer solstice than the winter solstice. So, the solstitial asymmetry could be attributed to the seeding mechanism of thunderstorm-driven atmospheric GWs.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...