ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hindawi  (2)
  • 2020-2022  (2)
Collection
Years
Year
  • 1
    Publication Date: 2020-06-16
    Description: High-pressure submerged cavitation jet is widely used in the fields of material peening, petroleum drilling, and ocean engineering. The impact performance of the jet with intensive cavitation is related to the factors such as working condition and the nozzle geometry. To reveal the relationship between the nozzle divergent angle and the jet pressure on the unsteady characteristics of the jet, high-speed photography with frame rate of 20000 fps is used to record the image of the cavitation clouds. Grayscale analysis algorithm developed in MATLAB is used to study the effects of injecting condition on the special structure, unsteady characteristics, and shedding frequency of the cavitation bubbles. The impact load characteristics of the cavitation jet with different cavitation numbers and stand-off distances are recorded using a high-response pressure transducer. It is found that the cavitation number is the main factor affecting the cavitation morphology of the submerged jet. The lower the cavitation number is, the more intense the cavitation occurs. The outlet divergent angle of the convergent-divergent nozzle also has a significant influence on the development of the cavitation clouds. In the three nozzles with the outlet divergent angles of 40°, 80°, and 120°, the highest bubble concentration is formed usinga nozzle with a divergent angle of 40°, but the high-concentration cavitating bubbles are only distributed in a very small range of the nozzle outlet. The cavities generated by using the nozzle with a divergent angle of 80° can achieve good results in terms of concentration and distribution range, while the nozzle with divergent angle of 120° has lower cavitation performance due to the lack of the constraint at the outlet which intensifies the shear stress of the jet. According to the result of frame difference method (FDM) analysis, the jet cavitation is mainly formed in the vortex structure generated by the shearing layer at the nozzle exit, and the most severe region in the collapse stage is the rear end of the downstream segment after the bubble cloud sheds off. The impact load of the cavitation jet is mainly affected by the stand-off distance of the nozzle from the impinged target, while the nozzle outlet geometry also has an effect on the impact performance. Optimizing the stand-off distance and the outlet geometry of the nozzles is found to be a good way to improve the performance of the cavitation jet.
    Print ISSN: 1070-9622
    Electronic ISSN: 1875-9203
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-12
    Description: Based on the coal seam mining under the condition of thick soil layer, the mechanical mining subsidence process under the condition of thick soil layer was analyzed. Combined with the results of core drilling and laboratory test in the mining area, the mechanical analysis of the special transition strata of “hard soil-soft rock” at the bottom of the soil layer was carried out. Additionally, the characteristics of the shallow buried soil layer were compared and analyzed. Furthermore, the significance of this transitional font to the surface subsidence law was proposed. By using the numerical simulation software of FLAC3D and choosing the thickness of “hard soil-soft rock” transitional font as the influencing factor, a model was established and the surface subsidence characteristics of different stratum combinations were numerically simulated. The research results show that the transitional font is the special strata indicating that the hard soil is transiting to the soft rock, having a significant effect on the ground movement and deformation induced by coal mining. It cannot be designated into the loose strata. Also, it cannot be regarded as the bed rock to study the influence of it on the surface subsidence. The “hard soil-soft rock” transitional font has the support effect on the overlying strata during coal seam mining, which can restrict the surface subsidence. Furthermore, the larger the thickness of the transitional font is, the more obvious the restricting effect of it on the surface subsidence is. Meantime, this restricting effect will not be changed with the variation of the proportion between the loss bed and the bed rock thickness. Only the restricting extent is a little different.
    Print ISSN: 1468-8115
    Electronic ISSN: 1468-8123
    Topics: Geosciences
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...