ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-25
    Description: Varved lake sediments provide climatic records with seasonal to annual resolution and low associated age uncertainty. Robust and detailed comparison of well-dated and annually laminated sediment records is crucial for reconstructing abrupt and regionally time-transgressive changes as well as validation of spatial and temporal trajectories of past climatic changes. The VARved sediments DAtabase (VARDA) presented here is the first data compilation for varve chronologies and associated palaeoclimatic proxy records. The current version 1.0 allows detailed comparison of published varve records from 95 lakes. VARDA is freely accessible and was created to assess outputs from climate models with high-resolution terrestrial palaeoclimatic proxies. VARDA additionally provides a technical environment that enables us to explore the database of varved lake sediments using a connected data model and can generate a state-of-the-art graphic representation of a multisite comparison. This allows the reassessment of existing chronologies and tephra events to synchronize and compare even distant varved lake records. Furthermore, the present version of VARDA permits the exploration of varve thickness data. In this paper, we report in detail on the data-mining and compilation strategies for the identification of varved lakes and assimilation of high-resolution chronologies, as well as the technical infrastructure of the database. Additional palaeoclimatic proxy data will be provided in forthcoming updates. The VARDA graph database and user interface can be accessed online at https://varve.gfz-potsdam.de (last access: 15 September 2020), all datasets of version 1.0 are available at https://doi.org/10.5880/GFZ.4.3.2019.003 (Ramisch et al., 2019).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-27
    Description: Glancing angle deposition (GLAD) is a physical vapor deposition (PVD) process using a substrate that rotates tilted at an angle to the evaporation source. Depending on the deposition conditions, it provides the controlled formation of regular nanostructures during the PVD process. As a result, a wide variety of shapes, such as spirals or vertical columns, can be easily fabricated in the nanometer range. For this reason, GLAD has already been proven reliable in the production of optical coatings with very low reflectance in a broad spectral range. This paper examines the morphology of tantalum nanostructures deposited on planar silicon substrates by electron beam evaporation. The prepared samples are characterized by scanning electron microscope (SEM) images at a breaking edge with respect to the layer structure and by focused ion beam (FIB) SEM images of the cross-sectional areas with respect to the porosity. The porosity can be used to model the optical properties of the thin film with the effective medium theory (EMT). Our work studies the relationship between the evaporation parameters (growth pitch and deposition angle) and thin film morphology of tantalum so that in future work the optical properties can be linked to the deposition parameters, which in turn can be chosen to achieve highly absorbent infrared radiation layers, e.g., for infrared sensors. It was shown that the porosity across the film thickness of both columnar and screw-like thin films is nearly constant, whereas the porosity profiles of spiral structures show a periodic pattern, the period of which seems to depend on the growth pitch.
    Print ISSN: 2194-8771
    Electronic ISSN: 2194-878X
    Topics: Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-26
    Description: Land-use change has been the dominant source of anthropogenic carbon emissions for most of the historical period and is currently one of the largest and most uncertain components of the global carbon cycle. Advancing the scientific understanding on this topic requires that the best data be used as input to state-of-the-art models in well-organized scientific assessments. The Land-Use Harmonization 2 dataset (LUH2), previously developed and used as input for simulations of the 6th Coupled Model Intercomparison Project (CMIP6), has been updated annually to provide required input to land models in the annual Global Carbon Budget (GCB) assessments. Here we discuss the methodology for producing these annual LUH2-GCB updates and extensions which incorporate annual wood harvest data updates from the Food and Agriculture Organization (FAO) of the United Nations for dataset years after 2015 and the History Database of the Global Environment (HYDE) gridded cropland and grazing area data updates (based on annual FAO cropland and grazing area data updates) for dataset years after 2012, along with extrapolations to the current year due to a lag of 1 or more years in the FAO data releases. The resulting updated LUH2-GCB datasets have provided global, annual gridded land-use and land-use-change data relating to agricultural expansion, deforestation, wood harvesting, shifting cultivation, regrowth and afforestation, crop rotations, and pasture management and are used by both bookkeeping models and dynamic global vegetation models (DGVMs) for the GCB. For GCB 2019, a more significant update to LUH2 was produced, LUH2-GCB2019 (https://doi.org/10.3334/ORNLDAAC/1851, Chini et al., 2020b), to take advantage of new data inputs that corrected cropland and grazing areas in the globally important region of Brazil as far back as 1950. From 1951 to 2012 the LUH2-GCB2019 dataset begins to diverge from the version of LUH2 used for the World Climate Research Programme's CMIP6, with peak differences in Brazil in the year 2000 for grazing land (difference of 100 000 km2) and in the year 2009 for cropland (difference of 77 000 km2), along with significant sub-national reorganization of agricultural land-use patterns within Brazil. The LUH2-GCB2019 dataset provides the base for future LUH2-GCB updates, including the recent LUH2-GCB2020 dataset, and presents a starting point for operationalizing the creation of these datasets to reduce time lags due to the multiple input dataset and model latencies.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...