ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (50)
  • Public Library of Science  (2)
  • American Institute of Physics  (1)
  • 2020-2022  (53)
Collection
Years
Year
  • 11
    Publication Date: 2020-08-05
    Description: Coilin is the main component of Cajal body (CB), a membraneless organelle that is involved in the biogenesis of ribonucleoproteins and telomerase, cell cycle, and cell growth. The disruption of CBs is linked to neurodegenerative diseases and potentially cancers. The coilin gene (COIL) contains two nonsynonymous SNPs: rs116022828 (E121K) and rs61731978 (V145I). Here, we investigated for the first time the functional impacts of these coilin SNPs on CB formation, coilin subcellular localization, microtubule formation, cell growth, and coilin expression and protein structure. We revealed that both E121K and V145I mutants could disrupt CB formation and result in various patterns of subcellular localization with survival motor neuron protein. Noteworthy, many of the E121K cells showed nucleolar coilin accumulation. The microtubule regrowth and cell cycle assays indicated that the E121K cells appeared to be trapped in the S and G2/M phases of cell cycle, resulting in reduced cell proliferation. In silico protein structure prediction suggested that the E121K mutation caused greater destabilization on the coilin structure than the V145I mutation. Additionally, clinical bioinformatic analysis indicated that coilin expression levels could be a risk factor for cancer, depending on the cancer types and races.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-08-25
    Description: Regional integrated energy site layout optimization involves multi-energy coupling, multi-data processing and multi-objective decision making, among other things. It is essentially a kind of non-convex multi-objective nonlinear programming problem, which is very difficult to solve by traditional methods. This paper proposes a decentralized optimization and comprehensive decision-making planning strategy and preprocesses the data information, so as to reduce the difficulty of solving the problem and improve operational efficiency. Three objective functions, namely the number of energy stations to be built, the coverage rate and the transmission load capacity of pipeline network, are constructed, normalized by linear weighting method, and solved by the improved p-median model to obtain the optimal value of comprehensive benefits. The artificial immune algorithm was improved from the three aspects of the initial population screening mechanism, population updating and bidirectional crossover-mutation, and its performance was preliminarily verified by test function. Finally, an improved artificial immune algorithm is used to solve and optimize the regional integrated energy site layout model. The results show that the strategies, models and methods presented in this paper are feasible and can meet the interest needs and planning objectives of different decision-makers.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-09-14
    Description: A U-shaped double-side polished plastic optical fiber (POF) is demonstrated as a liquid refractive index (RI) sensor. The refractive index of glycerinum solutions is identified by the intensity detection on the bending and evanescent wave loss change. Heat treatment and mechanical polishing are adopted to form the symmetrical side-polished POF probe. The processing parameters are experimentally optimized on the power transmittance. The sensitivity of 1541%/RIU (Refractive Index Unit) can be obtained with a resolution of 5.35 × 10−4 in the scope of 1.33–1.39. The favorable temperature characteristic is proved to offer stable RI sensing from 20 to 50 °C. This simple POF sensor has potentials in low-cost visible light intensity RI detection.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-01-22
    Description: Steroidal glycosides are important sources of innovative drugs. The increased diversification of steroidal glycosides will expand the probability of discovering active molecules. It is an efficient approach to diversify steroidal glycosides by using steroidal glycosyltransferases. OcUGT1, a uridine diphosphate-d-glucose (UDP-Glc)-dependent glycosyltransferase from Ornithogalum caudatum, is a multifunctional enzyme, and its glycodiversification potential towards steroids has never been fully explored. Herein, the glycodiversification capability of OcUGT1 towards 25 steroids through glucosylation and transglucosylation reactions were explored. Firstly, each of 25 compounds was glucosylated with UDP-Glc. Under the action of OcUGT1, five steroids (testosterone, deoxycorticosterone, hydrocortisone, estradiol, and 4-androstenediol) were glucosylated to form corresponding mono-glucosides and biosides. Next, OcUGT1-mediated transglucosylation activity of these compounds with another sugar donor ortho-nitrophenyl-β-d-glucopyranoside (oNPGlc) was investigated. Results revealed that the same five steroids could be glucosylated to generate mono-glucosides and biosides by OcUGT1 through transglucosylation reactions. These data indicated that OcUGT1-assisted glycodiversification of steroids could be achieved through glucosylation and transglucosylation reactions. These results provide a way to diversify steroidal glycosides, which lays the foundation for the increase of the probability of obtaining active lead compounds.
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-02-21
    Description: With renewable generation resources and multiple load demands increasing, the combined cooling, heating, and power (CCHP) microgrid energy management system has attracted much attention due to its high efficiency and low emissions. In order to realize the integration of substation resources and solve the problems of inaccurate, random, volatile and intermittent load forecasting, we propose a three-stage coordinated optimization scheduling strategy for a CCHP microgrid. The strategy contains three stages: a day-ahead economic scheduling stage, an intraday rolling optimization stage, and a real-time adjustment stage. Forecasting data with different accuracy at different time scales were used to carry out multilevel coordination and gradually improve the scheduling plan. A case study was used to verify that the proposed scheduling strategy can mitigate and eliminate the load forecasting error of renewable energy (for power balance and scheduling economy).
    Electronic ISSN: 2227-9717
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-03-16
    Description: Bletilla ochracea Schltr. polysaccharides (BOP) have a similar structure to Bletilla striata (Thunb.) Reichb.f. (Orchidaceae) polysaccharides (BSP). Therefore, BOP can be considered as a substitute for BSP in the food, pharmaceuticals and cosmetics fields. To the best of our knowledge, little information is available regarding the optimization of extraction and antioxidant activity of BOP. In this study, response surface methodology (RSM) was firstly used for optimizing the extraction parameters of BOP. The results suggested that the optimal conditions included a temperature of 82 °C, a duration of 85 min and a liquid/material ratio of 30 mL/g. In these conditions, we received 26.45% ± 0.18% as the experimental yield. In addition, BOP exhibited strong concentration-dependent antioxidant abilities in vitro. The half-maximal effective concentration (EC50) values of BOP against 1,1-diphenyl-2-picrylhydrazyl (DPPH·), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonate) (ABTS+·), hydroxyl (·OH) and superoxide anion (·O2−) radicals and ferrous ions (Fe2+) were determined as 692.16, 224.09, 542.22, 600.53 and 515.70 µg/mL, respectively. In conclusion, our results indicate that BOP can be a potential natural antioxidant, deserving further investigation.
    Electronic ISSN: 2227-9717
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-04-17
    Description: Lactoferrin (LF) exerts a promoting bone health function. The effects of LF on bone formation at the metabolic level have been less explored. Urinary metabolic profiling of growing Sprague-Dawley (SD) rats LF-supplemented (1000 mg/kg bw) for four weeks were explored by Liquid chromatography–tandem mass spectrometry (LC-MS/MS). The serum markers of bone formation and bone resorption, the bone mass, and the osteogenesis markers of femur were measured by an enzyme-linked immunosorbent assay, micro-computerized tomography, and immunohistochemistry, respectively. Compared with the control, LF supplementation improved bone formation (p 〈 0.05), reduced bone resorption (p 〈 0.05), enhanced femoral bone mineral density and microarchitecture (p 〈 0.05), and upregulated osteocalcin, osterix, and Runx-2 expression (p 〈 0.05) of femur. LF upregulated 69 urinary metabolites. KEGG and pathway enrichment analyses of those urinary metabolites, and the Person’s correlation analyses among those urinary metabolites and bone status revealed that LF impacted on bone formation via regulatory comprehensive pathways including taurine and hypotaurine metabolism, arginine and proline metabolism, cyanoamino acid metabolism, nitrogen metabolism, nicotinate and nicotinamide metabolism, and fatty acid biosynthesis. The present study indicated the metabolomics is a useful and practical tool to elucidate the mechanisms by which LF augments bone mass formation in growing animals.
    Electronic ISSN: 2072-6643
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-07-14
    Description: Traditional fermented bean pastes are indispensable seasonings in many East Asian countries. They are produced via hypertonic solutions by spontaneous fermentation. Functional, unknown microbiota carry great risks for food safety and stable quality. Thus, analysis and subsequent utilization of functional microbiota will be a good strategy to resolve these problems. During bean fermentation, the microbial functions were divided into two stages, including first stage-raw material (polypeptide) degradation and second stage-amino acid catabolism. In this study, we aimed to analyze the functional microbiota of first stage. Omics-studies, including high-throughput sequencing, correlation analysis and extracellular proteome, were used to generate candidate functional microbes for polypeptide degradation in this study. Then, we cultured the candidate functional microbes. After the batch fermentation and enzymatic analysis, we found three strains secreted peptidase and resulted amino acid accumulation, involving Aspergillus niger, Candida zeylanoides and Bacillus licheniformis. Thus, A. niger, C. zeylanoides and B. licheniformis conducted the functional microbiota for polypeptide degrading during hypertonic moromi fermentation. This study supplies a strategy for functional microbiota analysis. In addition, this is the first report that C. zeylanoides can secrete proteome and produce amino acids from polypeptide.
    Electronic ISSN: 2304-8158
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-10-26
    Description: In recent years, the construction and development of highways in turfy swamp areas has been very common. When highways pass through turfy swamps, they can change the local soil, vegetation and hydrological environment, but the impact on soil microorganisms is unclear. We studied the impact of highways on soil microbial communities and diversity in three turfy swamps. Soil samples were collected in the affected area (distance from the expressway 10 m) and control area (distance from the expressway 500–1000 m), and the soil properties, heavy metal content and microbial composition were measured. Subsequent statistical analysis showed that soil organic carbon (SOC), total nitrogen (TN), Cd, Cr, Zn, Cu, density and especially water table (WT) are the main driving forces affecting the composition of microorganisms. The WT and density can also be used to predict the change trend of the ratio of proteobacteria to acid bacteria, reflecting the soil nutrient status. In general, the composition of soil microorganisms in turfy swamp is mainly affected by road drainage and heavy metal emissions. This research provides new insights into the impact of highways on turfy swamps from the perspective of bacterial diversity and community composition, and it also provides a basis for the restoration of the wetland ecological environment.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-05-27
    Description: Soil reinforcement with natural or synthetic fibers enhances its mechanical behavior in various applications. Fiber-reinforced sands (FRS) can be relatively anisotropic because of the fiber self-weight and the compaction technique. However, the microscopic mechanisms underlying the anisotropy are still poorly understood. This study used a discrete element approach to analyze the microscopic mechanisms underlying the strength anisotropy of FRS due to fiber orientation. Analysis of contact networks revealed that the optimum fiber orientation angle is perpendicular to the main direction of strong contact force in direct shear testing. These fibers produced the largest increase in shear zone thickness, normal force around the fiber body, effective contact area, tensile force along fibers, and energy storage/dissipation. This study is valuable for further understanding of the mechanical behaviors of FRS.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...