ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (2)
  • American Geophysical Union
  • International Union of Crystallography
  • 2020-2022  (2)
Collection
Publisher
Year
  • 1
    Publication Date: 2020-08-09
    Description: Aims Darwin’s naturalization hypothesis proposes that successfully established alien species are less closely related to native species due to differences in their ecological niches. Studies have provided support both for and against this hypothesis. One reason for this is the tendency for phylogenetic clustering between aliens and natives at broad spatial scales with overdispersion at fine scales. However, little is known about how the phylogenetic relatedness of alien species alters the phylogenetic structure of the communities they invade, and at which spatial scales effects may manifest. Here, we examine if invaded understorey plant communities, i.e. containing both native and alien taxa, are phylogenetically clustered or overdispersed, how relatedness changes with spatial scale and how aliens affect phylogenetic patterns in understorey communities. Methods Field surveys were conducted in dry forest understorey communities in south-east Australia at five spatial scales (1, 20, 500, 1500 and 4500 m2). Standardized effect sizes of two metrics were used to quantify phylogenetic relatedness between communities and their alien and native subcommunities, and to examine how phylogenetic patterns change with spatial scale: (i) mean pairwise distance and (ii) mean nearest taxon distance (MNTD). Important Findings Aliens were closely related to each other, and this relatedness tended to increase with scale. Native species and the full community exhibited either no clear pattern of relatedness with increasing spatial scale or were no different from random. At intermediate spatial scales (20–500 m2), the whole community tended towards random whereas the natives were strongly overdispersed and the alien subcommunity strongly clustered. This suggests that invasion by closely related aliens shifts community phylogenetic structure from overdispersed towards random. Aliens and natives were distantly related across spatial scales, supporting Darwin’s naturalization hypothesis, but only when phylogenetic distance was quantified as MNTD. Phylogenetic dissimilarity between aliens and natives increased with spatial scale, counter to expected patterns. Our findings suggest that the strong phylogenetic clustering of aliens is driven by human-mediated introductions involving closely related taxa that can establish and spread successfully. Unexpected scale-dependent patterns of phylogenetic relatedness may result from stochastic processes such as fire and dispersal events and suggest that competition and habitat filtering do not exclusively dominate phylogenetic relationships at fine and coarse spatial scales, respectively. Distinguishing between metrics that focus on different evolutionary depths is important, as different metrics can exhibit different scale-dependent patterns.
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-27
    Description: The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral (DV) patterning mechanisms within the developing mandibular, hyoid, and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralizing BMP and endothelin signaling pathways and their effectors, the joint markers nkx3.2 and gdf5 and prochondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, whereas differences in notch signaling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the DV axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...