ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America  (4)
  • American Geophysical Union
  • 2020-2022  (4)
Collection
Years
Year
  • 1
    Publication Date: 2020-06-29
    Description: Late Devonian marine systems were characterized by major environmental perturbations and associated biotic community changes linked to climate change and widespread oceanic anoxia. Here, we provide high-resolution lipid biomarker chemostratigraphic records from the Upper Devonian Chattanooga Shale (Tennessee, USA) to investigate algal-microbial community changes in the southern Illinois Basin that were related to contemporaneous shifts in marine redox (as proxied by trace metals, Fe-species, and Corg/P) and salinity conditions (as proxied by B/Ga, Sr/Ba, and S/total organic carbon). The Frasnian was characterized by dominantly bacterial lipids (high hopane/sterane), near-marine salinity, and a shift from oxic to increasingly reducing conditions in response to increasing organic carbon sinking fluxes. Aryl isoprenoids and aryl isoprenoid ratios reveal that the O2-H2S chemocline was unstable and intermittently shallow (i.e., within the photic zone). The Frasnian-Famennian boundary was marked by a shift in microalgal community composition toward green algal (e.g., prasinophyte) dominance (lower C27 and higher C28 and C29 steranes), a sharp reduction in watermass salinity, and a stable O2-H2S chemocline below the photic zone, conditions that persisted until nearly the end of the Famennian. We infer that changing watermass conditions, especially a sharp reduction in salinity to possibly low-brackish conditions (
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-19
    Description: The recovery of marine ecosystems in the aftermath of the Permian-Triassic mass extinction was accompanied by significant carbon-cycle perturbations, as reflected in large-amplitude global excursions in Lower Triassic carbonate carbon isotope records. In the present study, we generated paired carbonate carbon (δ13Ccarb), organic carbon (δ13Corg), and nitrogen (δ15N) isotope records along with molar C/N ratios for a composite section in the Chaohu area of Anhui Province (northern Yangtze Platform, South China) that spans the entire Lower Triassic. These records document concurrent changes among multiple proxies related to marine plankton community composition, productivity rates, and nutricline structure, providing unparalleled insights into changes at the base of the marine trophic web during the Early Triassic recovery interval. Changes in carbonate-organic carbon isotopic differences (Δ13Ccarb-org) and C/N ratios indicate a general shift from anoxygenic photoautotrophy to eukaryotic algal productivity during the Early Triassic. The prevalence of prokaryotic photoautotrophs in the Griesbachian to Smithian was due to frequent environmental disturbance, whereas the reestablishment of eukaryotic algae as dominant primary producers in the Spathian reflects a general amelioration of marine environments at that time. Positive δ13Ccarb excursions and brief spikes toward higher Δ13Ccarb-org and C/N ratios around the Induan-Olenekian boundary and Smithian-Spathian boundary record transient shifts toward improved conditions and temporary rebounds of algal productivity. A negative δ15N shift was associated with decreasing δ13Ccarb, indicating that marine productivity was closely linked to N-fixation intensity owing to a general nutrient-N deficiency. Synchronous fluctuations of δ13Ccarb and δ13Corg through the Olenekian reflect changes in the δ13C of oceanic dissolved inorganic carbon, but the more limited variation in δ13Corg may have been due to concurrent changes in algal-microbial assemblages and, thus, net photosynthetic fractionation of carbon isotopes.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-10
    Description: Enhanced regional subduction-related volcanism in the South China craton concurrent with Siberian Traps large igneous province magmatism was a likely contributor to major biotic and environmental stresses associated with the Permian-Triassic boundary (ca. 252 Ma) mass extinction. However, the timing, intensity, and duration of this regional volcanic activity remain uncertain. We analyzed mercury (Hg) concentrations in three widely separated marine sections in the South China craton (Shangsi, Ganxi, and Chaohu) as well as Hg isotopic compositions in one section (Shangsi) from the Upper Permian (Changhsingian) through the lowermost Triassic (Induan) in order to track volcanic inputs. Four mercury enrichment (ME) intervals, dating to the lowermost Changhsingian (ME1), mid–Clarkina changxingensis zone (ME2), upper C. changxingensis to lower C. yini zones (ME3), and latest Permian mass extinction (LPME) interval (ME4), were recognized on the basis of elevated Hg/total organic carbon ratios. These records provide evidence of strong volcanism in the Tethyan region starting ~2 m.y. before the LPME, whereas only the ME4 event is recorded in extra-Tethyan sections. Mercury isotopes support the inference that pre-LPME Hg peaks were related to regional subduction-related volcanism, and that Hg emissions at the LPME were the result of Siberian Traps large igneous province intrusions into organic-rich sediments. This study demonstrates the feasibility of distinguishing flood-basalt from subduction-related volcanic inputs on the basis of marine sedimentary Hg records.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-24
    Description: The widely developed black shales deposited during the early Cambrian recorded paleoenvironmental information about coeval seawater. Numerous studies have been conducted on these shales to reconstruct the paleomarine environment during this time period. However, most research has been conducted on stratigraphic sections in South China, and equivalent studies of sections from other cratons are relatively rare. Here, we report Mo isotopic compositions as well as redox-sensitive trace-element and iron (Fe) speciation data for black shales of the Lower Cambrian Yuertusi Formation from the Tarim block (i.e., a small craton). The Fe speciation data show high FeHR/FeT and Fepy/FeHR ratios, indicating roughly sustained euxinic bottom-water conditions during their deposition. Based on Mo isotopic compositions (δ98/95Mo), we further classified the euxinic black shales into two intervals: a lower interval (0−21.3 m) and an upper interval (21.3−32.3 m). The lower interval is characterized by variable Mo isotopic compositions (−2.12‰ to +0.57‰, mean = −0.52‰ ± 0.72‰), with an obvious negative excursion in its middle portion. The overlying upper interval has relatively heavy δ98/95Mo values up to +1.42‰ (mean = +0.62‰ ± 0.37‰). We ascribe δ98/95Mo differences in the lower and upper intervals to inadequate aqueous H2S concentrations for quantitative thiomolybdate formation under euxinic conditions. The most negative Mo isotope excursion may have been caused by upwelling hydrothermal inputs during a transgression, consistent with significantly elevated total organic carbon (TOC) contents, Mo and U enrichments, and Fe supply. Relatively positive δ98/95Mo values in the upper interval have roughly similar variations with other coeval sections, indicating such variations were common for early Cambrian euxinic deposits, and they were most likely caused by local differences in [H2S]aq. Compilation of Mo isotope data from the early Cambrian and earlier times further indicates relatively oxygenated seawater, especially the deep-marine areas during the early Cambrian before reaching a state like modern seawater.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...