ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-15
    Description: Gene losses in plastid genomes (plastomes) are often accompanied by functional transfer to the nucleus or substitution of an alternative nuclear-encoded gene. Despite the highly conserved gene content in plastomes of photosynthetic land plants, recent gene loss events have been documented in several disparate angiosperm clades. Among these lineages, Passiflora lacks several essential ribosomal genes, rps7, rps16, rpl20, rpl22, and rpl32, the two largest plastid genes, ycf1 and ycf2, and has a highly divergent rpoA. Comparative transcriptome analyses were performed to determine the fate of the missing genes in Passiflora. Putative functional transfers of rps7, rpl22, and rpl32 to nucleus were detected, with the nuclear transfer of rps7, representing a novel event in angiosperms. Plastid-encoded rps7 was transferred into the intron of a nuclear-encoded plastid-targeted thioredoxin m-type gene, acquiring its plastid transit peptide (TP). Plastid rpl20 likely experienced a novel substitution by a duplicated, nuclear-encoded mitochondrial-targeted rpl20 that has a similar gene structure. Additionally, among rosids, evidence for a third independent transfer of rpl22 in Passiflora was detected that gained a TP from a nuclear gene containing an organelle RNA recognition motif. Nuclear transcripts representing rpoA, ycf1, and ycf2 were not detected. Further analyses suggest that the divergent rpoA remains functional and that the gene is under positive or purifying selection in different clades. Comparative analyses indicate that alternative translocon and motor protein complexes may have substituted for the loss of ycf1 and ycf2 in Passiflora.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-18
    Description: Plastid genomes (plastomes) of land plants have a conserved quadripartite structure in a gene-dense unit genome consisting of a large inverted repeat that separates two single copy regions. Recently, alternative plastome structures were suggested in Geraniaceae and in some conifers and Medicago the coexistence of inversion isomers has been noted. In this study, plastome sequences of two Cyperaceae, Eleocharis dulcis (water chestnut) and Eleocharis cellulosa (gulf coast spikerush), were completed. Unlike the conserved plastomes in basal groups of Poales, these Eleocharis plastomes have remarkably divergent features, including large plastome sizes, high rates of sequence rearrangements, low GC content and gene density, gene duplications and losses, and increased repetitive DNA sequences. A novel finding among these features was the unprecedented level of heteroplasmy with the presence of multiple plastome structural types within a single individual. Illumina paired-end assemblies combined with PacBio single-molecule real-time sequencing, long-range polymerase chain reaction, and Sanger sequencing data identified at least four different plastome structural types in both Eleocharis species. PacBio long read data suggested that one of the four E. dulcis plastome types predominates.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-07
    Description: Nuclear proteins bind chromatin to execute and regulate genome-templated processes. While studies of individual nucleosome interactions have suggested that an acidic patch on the nucleosome disk may be a common site for recruitment to chromatin, the pervasiveness of acidic patch binding and whether other nucleosome binding hot-spots exist remain unclear. Here, we use nucleosome affinity proteomics with a library of nucleosomes that disrupts all exposed histone surfaces to comprehensively assess how proteins recognize nucleosomes. We find that the acidic patch and two adjacent surfaces are the primary hot-spots for nucleosome disk interactions, whereas nearly half of the nucleosome disk participates only minimally in protein binding. Our screen defines nucleosome surface requirements of nearly 300 nucleosome interacting proteins implicated in diverse nuclear processes including transcription, DNA damage repair, cell cycle regulation and nuclear architecture. Building from our screen, we demonstrate that the Anaphase-Promoting Complex/Cyclosome directly engages the acidic patch, and we elucidate a redundant mechanism of acidic patch binding by nuclear pore protein ELYS. Overall, our interactome screen illuminates a highly competitive nucleosome binding hub and establishes universal principles of nucleosome recognition.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-01
    Description: Cnidarian jellyfish can be dominant players in the food webs of highly productive Eastern Boundary Currents (EBC). However, the trophic role of inconspicuous hydromedusae in EBCs has traditionally been overlooked. We collected mesozooplankton from five stations along two cross-shelf transects in the Northern California Current (NCC) during winter and summer of 2018–2019. We analyzed gut contents of 11 hydromedusan species and the prey community to (i) determine prey resource use by hydromedusae and (ii) determine temporal shifts in the trophic niche of hydromedusae, focusing on the two most collected species (Clytia gregaria and Eutonina indicans). Hydromedusae in the NCC fed mostly on copepods, appendicularians and invertebrate larvae. Nonmetric multidimensional scaling of hydromedusan diets showed seasonal shifts in prey resource driven by the abundant C. gregaria, which fed mostly on copepod eggs during winter and fed mostly on appendicularians and copepods during summer. Prey selectivity for copepod eggs increased during winter for C. gregaria and E. indicans. Intriguingly, theoretical ingestion rates show that both species acquire similar amounts of carbon during upwelling and nonupwelling conditions. Hydromedusae’s consistent presence and predation impact across seasons may lead to significant effects in carbon and energy transfer through the NCC food web.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-21
    Description: The silky shark Carcharhinus falciformis regularly associates with floating objects in the open ocean, resulting in relatively high levels of bycatch in industrial tuna purse seine fisheries using drifting fish aggregating devices (FADs). This bycatch has contributed to concerns regarding the sustainability of this fishery and its impact on silky shark populations. To investigate fishery interactions, movements of 28 silky sharks (86–235 cm TL, mean = 118 cm) fitted with pop-up and archival tags in the western Indian Ocean, between 2010 and 2012, were examined. Monthly overlap between probability surfaces of sharks and two fishery metrics (FAD-tuna catches and FAD positions) were calculated. Vertical habitat use overlapped almost entirely with operational gear depth. Horizontal movements were extensive (3–5024 km) and covered large areas of the western Indian Ocean. Monthly overlap with FAD distributions was consistently high (64.03–100%) highlighting the need for compliance with FAD design regulations to avoid entanglement. Monthly overlap with tuna catches was more variable (8.43–51.83%). The observed movement patterns suggest static spatial management measures would be have limited conservation impact, however dynamic approaches could be appropriate. Limiting fishery activities directly will likely have the greatest conservation outcomes for silky sharks in the purse seine fishery.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...