ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-02-07
    Description: Normal human cells undergo a finite number of cell divisions and ultimately enter a nondividing state called replicative senescence. It has been proposed that telomere shortening is the molecular clock that triggers senescence. To test this hypothesis, two telomerase-negative normal human cell types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with vectors encoding the human telomerase catalytic subunit. In contrast to telomerase-negative control clones, which exhibited telomere shortening and senescence, telomerase-expressing clones had elongated telomeres, divided vigorously, and showed reduced straining for beta-galactosidase, a biomarker for senescence. Notably, the telomerase-expressing clones have a normal karyotype and have already exceeded their normal life-span by at least 20 doublings, thus establishing a causal relationship between telomere shortening and in vitro cellular senescence. The ability to maintain normal human cells in a phenotypically youthful state could have important applications in research and medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bodnar, A G -- Ouellette, M -- Frolkis, M -- Holt, S E -- Chiu, C P -- Morin, G B -- Harley, C B -- Shay, J W -- Lichtsteiner, S -- Wright, W E -- AG05747/AG/NIA NIH HHS/ -- AG07992/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 16;279(5349):349-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geron Corporation, Menlo Park, CA 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9454332" target="_blank"〉PubMed〈/a〉
    Keywords: Biomarkers ; Catalysis ; *Cell Aging ; *Cell Division ; Cell Line ; Cell Transformation, Neoplastic ; Cloning, Molecular ; DNA-Binding Proteins ; Fibroblasts/cytology ; Homeostasis ; Humans ; Karyotyping ; Phenotype ; Pigment Epithelium of Eye/cytology ; Proteins/genetics/*metabolism ; *Rna ; RNA-Directed DNA Polymerase/genetics/metabolism ; Stem Cells/cytology/enzymology ; Telomerase/genetics/*metabolism ; Telomere/metabolism/*physiology/ultrastructure ; Transfection ; Tumor Cells, Cultured ; beta-Galactosidase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...