ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (7)
  • 1995-1999  (90)
Collection
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 11 (1999), S. 48-57 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The competition between the viscous spreading of liquid on a substrate and the absorption by the substrate is studied using several models. The local behaviors near the contact lines, the time scales of droplet spreading and disappearance, and the dependencies on the physical factors that enter are discussed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 8 (1996), S. 2319-2336 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The manufacturing of single crystals of multi-component materials with uniform material properties is frequently hampered by the presence of morphological instabilities during the solidification. In this paper we extend into the nonlinear regime our previous work on the influence of shear flows on the linear stability of the solid/liquid interface during the directional solidification of binary alloys. The flows are generated by unidirectional or nonplanar harmonic oscillations of the crystal parallel to the mean interface position, and oscillations with physically realizable amplitudes and frequencies are found to be useful for stabilization purposes. A strongly nonlinear equation which governs the evolution of the interface in the limit of high surface energy, a weak flow and thermodynamic equilibrium is derived, and a weakly nonlinear analysis of this equation is performed. For the unidirectional case, it is found that oscillations with sufficiently large amplitude will change the initial bifurcation from super- to subcritical. For the nonplanar case, it is found that subcritical instability of roll, square and hexagonal cells is favored as the amplitude of the flow is increased. Thus, some of the stabilization due to the flow may be lost at finite amplitude, but substantial stabilization can be retained. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 6949-6955 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The emission spectrum of CoF has been investigated in the 820 nm–3.5 μm spectral region using a Fourier transform spectrometer. The bands were excited in a carbon tube furnace by the reaction of cobalt metal vapor and CF4 at a temperature of about 2300 °C. The bands observed in the 3000–9000 cm−1 region have been classified into three new transitions. The bands with 0-0 R-heads at 3458 cm−1, 3759 cm−1, and 4012 cm−1 have been assigned as the 3Δ1–3Φ2, 3Δ2–3Φ3, and 3Δ3–3Φ4 subbands of the C 3Δ–X 3Φi electronic transition. To higher wave numbers, two bands with R-heads at 8396 cm−1 and 8565 cm−1 have been assigned as the 3Δ2–3Φ3 and 3Δ3–3Φ4 subbands of the D 3Δ–X 3Φi transition. In addition, the bands with R-heads at 6339 cm−1 and 6542 cm−1 have been assigned as the 0-0 3Φ4–3Δ3 and 3Φ3–3Δ2 subbands of the G 3Φ–C 3Δ transition. The G 3Φ–X 3Φ transition has been reported previously as the [10.3]3Φ–X 3Φ transition. The rotational analysis of many bands of these transitions has been obtained and the molecular constants for the two new low-lying excited states have been extracted. Six new band involving the high vibrational levels of ground state (up to v=6) have been identified in the 3Φ4–3Φ4 subband of the G 3Φ–X 3Φ transition. The rotational analysis of these bands provides improved constants for the ground state. We have noticed, as have previous workers, the strong correspondence that exists between the states of transition metal monofluorides and monohydrides. In addition, all of the low-lying states of CoF and CoH are related to the low-lying terms of the Co+ atom. We discuss these correlations between the energy levels of CoF, CoH, and Co+. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 7 (1995), S. 248-265 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A two-dimensional volatile liquid droplet on a uniformly heated horizontal surface is considered. Lubrication theory is used to describe the effects of capillarity, thermocapillarity, vapor recoil, viscous spreading, contact-angle hysteresis, and mass loss on the behavior of the droplet. A new contact-line condition based on mass balance is formulated and used, which represents a leading-order superposition of spreading and evaporative effects. Evolution equations for steady and unsteady droplet profiles are found and solved for small and large capillary numbers. In the steady evaporation case, the steady contact angle, which represents a balance between viscous spreading effects and evaporative effects, is larger than the advancing contact angle. This new angle is also observed over much of the droplet lifetime during unsteady evaporation. Further, in the unsteady case, effects which tend to decrease (increase) the contact angle promote (delay) evaporation. In the "large'' capillary number limit, matched asymptotics are used to describe the droplet profile; away from the contact line the shape is determined by initial conditions and bulk mass loss, while near the contact-line surface curvature and slip are important. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The mechanism of water-stress-induced embolism of xylem was investigated in Malosma laurina and Heteromeles arbutifolia, two chaparral shrub species of southern California. We tested the hypothesis that the primary cause of xylem dysfunction in these species during dehydration was the pulling of air through the pores in the cell walls of vessels (pores in pit membranes) as a result of high tensions on xylem water. First, we constructed vulnerability-to-embolism curves for (i) excised branches that were increasingly dehydrated in the laboratory and (ii) hydrated branches exposed to increasing levels of external air pressure. Branches of M. laurina that were dehydrated became 50% embolized at a xylem pressure potential of -1.6 MPa, which is equal in magnitude but opposite in sign to the +1.6 MPa of external air pressure that caused 50% embolism in hydrated stems. Dehydrated and pressurized branches of H. arbutifolia reached a 50% level of embolism at -6.0 and +6.4 MPa, respectively. Secondly, polystyrene spheres ranging in diameter from 20 to 149 nm were perfused through hydrated stem segments to estimate the pore size in the vessel cell walls (pit membranes) of the two species. A 50% or greater reduction in hydraulic conductivity occurred in M. laurina at perfusions of 30, 42, 64 and 82 nm spheres and in H. arbutifolia at perfusions of 20 and 30 nm spheres. Application of the capillary equation to these pore diameters predicted 50% embolism at xylem tensions of -2.2 MPa for M. laurina and -6.7 MPa for H. arbutifolia, which are within 0.7 MPa of the actual values. Our results suggest that the size of pores in pit membranes may be a factor in determining both xylem efficiency and vulnerability to embolism in some chaparral species. H. arbutifolia, with smaller pores and narrower vessels, withstands lower water potentials but has lower transport efficiency. M. laurina, with wider pores and wider vessels, has a greater transport efficiency but requires a deeper root system to help avoid catastro-phically low water potentials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Pressure probe measurements have been interpreted as showing that xylem pressures below c. –0.4 MPa do not exist and that pressure chamber measurements of lower negative pressures are invalid. We present new evidence supporting the pressure chamber technique and the existence of xylem pressures well below –0.4 MPa. We deduced xylem pressures in water-stressed stem xylem from the following experiment: (1) loss of hydraulic conductivity in hydrated stem xylem (xylem pressure = atmospheric pressure) was induced by forcing compressed air into intact xylem conduits; (2) loss of hydraulic conductivity from cavitation and embolism in dehydrating stems was measured, and (3) the xylem pressure in dehydrated stems was deduced as being equal and opposite to the air pressure causing the same loss of hydraulic conductivity in hydrated stems. Pressures determined in this way are only valid if cavitation was caused by air entering the xylem conduits (air-seeding). Deduced xylem pressure showed a one-to-one correspondence with pressure chamber measurements for 12 species (woody angiosperms and gymnosperms); data extended to c. –10 MPa. The same correspondence was obtained under field conditions in Betula occidentalis Hook., where pressure differences between air- and water-filled conduits were induced by a combination of in situ xylem water pressure and applied positive air pressure. It is difficult to explain these results if xylem pressures were above –0.4 MPa, if the pressure chamber was inaccurate, and if cavitation occurred by some mechanism other than air-seeding. A probable reason why the pressure probe does not register large negative pressures is that, just as cavitation within the probe limits its calibration to pressures above c. –0.5 MPa, cavitation limits its measurement range in situ.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 20 (1997), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Water transport from the roots to leaves in chaparral shrubs of California occurs through xylem vessels and tracheids. The formation of gas bubbles in xylem can block water transport (gas embolism), leading to shoot dieback. Two environmental factors that cause gas embolism formation in xylem conduits are drought and freezing air temperatures. We compared the differential vulnerabilities of Rhus laurina and Ceanothus megacarpus, co-dominant shrub species in the coastal regions of the Santa Monica Mountains of southern California, to both water stress-induced and freezing-induced embolism of their xylem. Rhus laurina has relatively large xylem vessel diameters, a deep root system, and a large basal burl from which it vigorously resprouts after wildfire or freezing injury. In contrast, Ceanothus megacarpus has small-diameter vessels, a shallow root system, no basal burl and is a non-sprouter after shoot removal by wildfire. We found that R. laurina became 50% embolized at a water stress of –3 MPa and 100% embolized by a freeze–thaw cycle at all hydration levels. In contrast, C. megacarpus became 50% embolized at a water stress of –9 MPa and 100% embolized by freeze–thaw events only at water potentials lower than –3 MPa. Reducing thaw rates from 0·8 °C min−1 to 0·08 °C min−1 (the normal thaw rate measured in situ) had no effect on embolism formation in R. laurina but significantly reduced embolism occurrence in well-hydrated C. megacarpus (embolism reduced from 74 to 35%). These results were consistent with the theory of gas bubble formation and dissolution in xylem sap. They also agree with field observations of differential shoot dieback in these two species after a natural freeze–thaw event in the Santa Monica Mountains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: During the dry season (early May through September of 1994), following a fall 1993 wildfire, a survey of seedling nodulation was conducted at several sites in the Santa Monica Mountains of Southern California. Seedlings of Ceanothus spinosus, C. megacarpus, C. oliganthus, and C. cuneatus were manually excavated. During this period, only 12 of the 182 seedlings excavated were nodulated, and all of the nodulated seedlings were found in the relatively moist clay soils of a stream bank. No nodules were observed on the 170 seedlings excavated from the drier sites. An irrigation experiment was established in midsummer to assess whether water stress inhibits nodulation of post-fire Ceanothus seedlings. Four plots with numerous seedlings of C. cuneatus and C. spinosus were irrigated with distilled water and monitored over a 9-week period. There was a significant increase in nodulation frequency, water potential, stomatal conductance, transpiration, shoot elongation, and photosynthetic rate of irrigated seedlings compared with adjacent controls. Although these data support the hypothesis that water stress inhibits nodulation. it is unclear whether this is because of an effect of soil moisture on the nodulation capacity of the soils (i.e. on the size and physiological state of the soil Frankia population) or to a host plant response to drought which might prevent actinorhizal root infection and/or nodule development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 387 (1997), S. 666-667 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The relationship between long-term potentiation (LTP) and spatial learning has been explored in a variety of genetically engineered mice with deletions of specific genes. With few exceptions, LTP in these animals has been studied in the hippocampal slice preparation. The conditions required to ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...