ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (39)
  • 2020-2022  (39)
  • 2000-2004
  • 1
    Publication Date: 2020-10-23
    Description: A pH colorimetric sensor array was prepared and characterized by combining tetrabromophenol blue (TBB) and bromothymol blue (BB) embedded in organically modified silicate (OrMoSil) spots polyvinylidene fluoride (PVDF)-supported. The signal was based on the Hue profile (H). The individual calibrations of TBB and BB showed precisions with minimum values of 0.012 pH units at pH = 2.196 for TBB and 0.018 at pH = 6.692 for BB. The overall precision of 10 spots of the mixture TBB/BB increased in the pH range of 1.000–8.000 from a minimum value of pH precision of 0.009 at pH = 2.196 to 0.012 at pH = 6.692, with the worst value of 0.279 pH units at pH = 4.101. The possibility to produce an array with much more than 10 spots allows for improving precision. The H analytical performance was compared to those of other color spaces such as RGB, Lab, and XYZ. H was the best one, with prediction error in the range of 0.016 to 0.021 pH units, at least three times lower than the second-best (x coordinate), with 0.064 pH units. These results were also confirmed by the calculation of the main experimental contributions to the pH prediction error, demonstrating the consistency of the proposed calculation approach.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-04
    Description: The correct design of a system of borehole heat exchangers (BHEs) is the primary requirement for attaining high performance with geothermal heat pumps. The design procedure is based on a reliable estimate of ground thermal properties, which can be assessed by a Thermal Response Test (TRT). The TRT analysis is usually performed adopting the Infinite Line Source model and is based on a series of assumptions to which the experiment must comply, including stable initial ground temperatures and a constant heat transfer rate during the experiment. The present paper novelty is related to depth distributed temperature measurements in a series of TRT experiments. The approach is based on the use of special submersible sensors able to record their position inside the pipes. The focus is on the early period of BHE installation, when the grout cement filling the BHE is still chemically reacting, thus releasing extra heat. The comprehensive dataset presented here shows how grout hydration can affect the depth profile of the undisturbed ground temperature and how the temperature evolution in time and space can be used for assessing the correct recovery period for starting the TRT experiment and inferring information on grouting defects along the BHE depth.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-24
    Description: One of the most important parameters concerning durability is undoubtedly represented by cement matrix resistance to chloride diffusion in environments where reinforced concrete structures are exposed to the corrosion risk induced by marine environment or de-icing salts. This paper deals with protection from chloride ingress by a silane-based surface-applied corrosion inhibitor. Results indicated that the corrosion inhibitor (CI) allows to reduce the penetration of chloride significantly compared to untreated specimens, independently of w/c, cement type, and dosage. Reduction of chloride diffusion coefficient (Dnssn) measured by an accelerated test in treated concrete was in the range 30–60%. Natural chloride diffusion test values indicate a sharp decrease in apparent diffusion coefficient (Dapp) equal to about 75% when concrete is protected by CI. Mechanism of action of CI in slowing down the chloride penetration inside the cement matrix is basically due to the water repellent effect as confirmed by data of concrete bulk electrical resistivity.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-27
    Description: The paper assesses the durability of one-part alkali-activated slag-based mortars (AAS) in different aggressive environments, such as calcium chloride- and magnesium sulphate-rich solutions, in comparison with traditional cementitious mortars at equal water to binder ratio. Moreover, the freezing and thawing resistance was evaluated on mortars manufactured with and without air entraining admixture (AEA). Experimental results indicate that the alkali content is a key parameter for durability of AAS: the higher the alkali content, the higher the resistance in severe conditions. In particular, high-alkali content AAS mortars are characterized by freeze–thaw resistances similar to that of blast furnace cement-based mixtures, but lower than that of Portland cement-mortars while AAS with low activators dosages evidence a very limited resistance in cold environment. The effectiveness of AEA in enhancement of freeze–thaw resistance is confirmed also for AAS mortars. Moreover, AAS mixtures are quasi-immune to expansive calcium oxychloride formation in presence of CaCl2-based deicing salts, but they are very vulnerable to magnesium sulphate attack due to decalcification of C-S-H gel and gypsum formation.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-04-19
    Description: The livestock sector plays a fundamental role in human beings’ livelihood all over the world. However, significant changes have occurred in the last decades, transforming the livestock sector into a highly intensive economic activity with negative impacts on human health and the environment. Such a reality requires the identification of easy methods to apply to sustainable manure management. Composting is a clever approach to transform manure into a resource. Very limited scientific literature is available on techniques for composting in small and medium livestock farms. This paper describes, in detail, some on-farm composting plants made in Southern Italy within different rural contexts. A depth analysis of farm starting situation and nearby territory (resources/services) was performed to identify the least expensive/impactful composting logistics (reduction of ex novo farm investments and transport costs, etc.), making the action economically sustainable for farmers. This approach appears to be successful in guiding farmers towards the best composting technological option, based on pre-existent on-farm resources. These small-scale composting plants, reproducible in other similar contexts, allow one to turn manure into a product with a profitable placement on the market. For this reason, these manure management options should be widespread, especially under organic farming systems.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-17
    Description: This experimental work analyzes the hydrogen embrittlement mechanism in quenched and tempered low-alloyed steels. Experimental tests were performed to study hydrogen diffusion under applied cyclic loading. The permeation curves were fitted by considering literature models in order to evaluate the role of trapping—both reversible and irreversible—on the diffusion mechanism. Under loading conditions, a marked shift to the right of the permeation curves was noticed mainly at values exceeding the tensile yield stress. In the presence of a relevant plastic strain, the curve changes due to the presence of irreversible traps, which efficiently subtract diffusible atomic hydrogen. A significant reduction in the apparent diffusion coefficient and a considerable increase in the number of traps were noticed as the maximum load exceeded the yield strength. Cyclic loading at a tensile stress slightly higher than the yield strength of the material increases the hydrogen entrapment phenomena. The tensile stress causes a marked and instant reduction in the concentration of mobile hydrogen within the metal lattice from 55% of the yield strength, and it increases significantly in the plastic field.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-19
    Description: As electric vehicles gain acceptance, an increasing number of households consider the possibility of buying the bundle including an electric car, a photovoltaic system, and a battery storage unit. Apart from the attractive environmental benefits, a relevant uncertainty concerns the economic convenience of such a choice. Since many variables play a role, we set up a total cost of ownership model to evaluate whether, and under which conditions, the bundle is cost-competitive relative to buying an electric car only (and charging it from the electrical grid) or a conventional combustion engine car. By combining, for the first time, such an economic model with an energy model and a driving profile model, we find that the degree of electricity self-production used to charge the electric car might be very high, varying from 90% to 62%, depending on the annual distance traveled. The cost of such electricity varies widely and can be lower than the grid electricity price when fiscal incentives are available and for long annual distances traveled. A smart charging practice based on both economic factors and weather forecast can greatly enhance self-sufficiency, i.e., independence from the electrical grid. We estimate that, given the current Italian financial incentives, 10,000 km/year are needed to make the electric car cost-competitive with respect to an equivalent petrol-fueled one. Such threshold increases to more than 25,000 km/year if financial incentives are removed.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-04-01
    Description: Combined effects of reduced pH, as predicted under climate change scenarios, and the most popular and widely used stimulant caffeine were assessed in hemocyte parameters of the mussel Mytilus galloprovincialis, being hemocytes involved in immune defense. Bivalves were exposed for one week to natural pH (8.1) and two reduced pH values (pH -0.4 units and pH -0.7 units). Exposure continued for additional two weeks, both in the absence and in the presence of environmentally relevant concentrations of caffeine (0.05 and 0.5 µg/L). Hemocyte parameters (total hemocyte count, hemocyte volume and diameter, neutral red uptake and hemocyte proliferation) were measured after 7 days of exposure to pH only, and after 14 (T1) and 21 (T2) days of exposure to the various pH*caffeine combinations. At all sampling times, pH significantly affected all the biological variables considered, whereas caffeine exhibited a significant influence at T2 only. Among the various hemocyte parameters, caffeine caused a significant increase in total hemocyte count at T2, and in hemocyte volume and diameter at both T1 and T2, when a significant interaction between pH and caffeine was also found. Overall, results demonstrated that hemocyte functionality was strongly influenced by the experimental conditions tested. Further studies are needed to assess combined effects of climate changes and emerging contaminants on bivalve immune system when challenged with environmental pathogens.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-06-03
    Description: In the current scenario of rapidly evolving climate change, crop plants are more frequently subjected to stresses of both abiotic and biotic origin, including exposure to unpredictable and extreme climatic events, changes in plant physiology, growing season and phytosanitary hazard, and increased losses up to 30% and 50% in global agricultural productions. Plants coevolved with microbial symbionts, which are involved in major functions both at the ecosystem and plant level. The use of microbial biostimulants, by exploiting this symbiotic interaction, represents a sustainable strategy to increase plant performances and productivity, even under stresses due to climate changes. Microbial biostimulants include beneficial fungi, yeasts and eubacteria sharing the ability to improve plant nutrition, growth, productivity and stress tolerance. This work reports the current knowledge on microbial biostimulants and provides a critical review on their possible use to mitigate the biotic and abiotic stresses caused by climate changes. Currently, available products often provide a general amelioration of cultural conditions, but their action mechanisms are largely undetermined and their effects often unreliable. Future research may lead to more specifically targeted products, based on the characterization of plant-microbe and microbial community interactions.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-06-08
    Description: The paper is devoted to the study of stress corrosion cracking phenomena in friction stir welding AA-2024 T3 joints. Constant load (CL) cell and slow strain rate (SSR) tests were carried out in aerated NaCl 35 g/L solution. During the tests, open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were measured in the different zones of the welding. The results evidenced initial practical nobilty of the nugget lower compared to both heat-affected zone and the base metal. This effect can be mainly ascribed to the aluminum matrix depletion in copper, which precipitates in form of copper-rich second phases. In this zones, no stress corrosion cracking was noticed, but well-evident stress-enhanced intergranular corrosion occurred. This is due to the uneven distribution of platic deformation during the slow strain rate tests. Higher strain values are localized at the heat affected zone, where softening occurs. On the contrary, stress values at the nugget are not sufficient to favor both the initiation and propagation of stress corrosion cracks. In the range of processing parameter studied in this experimental work, the stress corrosion cracking susceptibility of the friction stir welding (FSW)-ed alloy is then similar to that of the base metal.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...