ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9753
    Keywords: global trends ; Carabidae ; bioindicators ; urban-rural gradients ; pitfall traps
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Nature of Science, Research, Systems of Higher Education, Museum Science
    Notes: Abstract We introduce an initiative to assess and compare landscape changes related to human activities on a global scale, using a single group of invertebrates. The GLOBENET programme uses common field methodology (pitfall trapping), to appraise assemblages of ground beetles (Coleoptera, Carabidae) in visually-similar land-mosaics (urban-rural gradients). Carabids were selected as the focal taxon as they are sufficiently varied (both taxonomically and ecologically), abundant and sensitive to the environment. However, work on other taxa is comparable with the GLOBENET framework. The continuum of decreasing human pressure from city centres into the surrounding countryside was selected to represent human-caused disturbance for this initial stage of GLOBENET because these gradients can be found virtually all over the world. Through the broad-scale assessment envisioned in the GLOBENET programme, we seek to separate general, repeated effects on biodiversity from those that depend on local environments or particular biotic assemblages. Based on this understanding we aim to develop simple tools and protocols for assessing ecological effects of human-caused landscape changes, which could help to sustainably manage landscapes for biodiversity and for human requirements. For instance, the response of different functional groups of carabids to these landscape changes may help guide management practices. Further GLOBENET developments and information are available at our website: http://www.helsinki.fi/science/globenet/
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-08-02
    Description: In the absence of any record of protocells, the most direct way to test our understanding of the origin of cellular life is to construct laboratory models that capture important features of protocellular systems. Such efforts are currently underway in a collaborative project between NASA-Ames, Harvard Medical School and University of California. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures. The centerpiece of this project is a method for the in vitro evolution of protein enzymes toward arbitrary catalytic targets. A similar approach has already been developed for nucleic acids in which a small number of functional molecules are selected from a large, random population of candidates. The selected molecules are next vastly multiplied using the polymerase chain reaction. A mutagenic approach, in which the sequences of selected molecules are randomly altered, can yield further improvements in performance or alterations of specificities. Unfortunately, the catalytic potential of nucleic acids is rather limited. Proteins are more catalytically capable but cannot be directly amplified. In the new technique, this problem is circumvented by covalently linking each protein of the initial, diverse, pool to the RNA sequence that codes for it. Then, selection is performed on the proteins, but the nucleic acids are replicated. Additional information is contained in the original extended abstract.
    Keywords: Exobiology
    Type: General Meeting of the NASA Astrobiology Insititute; 47-48
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.
    Keywords: Exobiology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present results from several projects in the new field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. We have developed a procedure for calculating long-range effects in molecular dynamics using a plane wave expansion of the electrostatic potential. This method is expected to be highly efficient for simulating biological systems on massively parallel supercomputers. We have perform genomics analysis on a family of actin binding proteins. We have performed quantum mechanical calculations on carbon nanotubes and nucleic acids, which simulations will allow us to investigate possible sources of organic material on the early earth. Finally, we have developed a model of protobiological chemistry using neural networks.
    Keywords: Exobiology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...