ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-12-09
    Description: Proteins that directly regulate tumour necrosis factor receptor (TNFR) signalling have critical roles in regulating cellular activation and survival. ABIN-1 (A20 binding and inhibitor of NF-kappaB) is a novel protein that is thought to inhibit NF-kappaB signalling. Here we show that mice deficient for ABIN-1 die during embryogenesis with fetal liver apoptosis, anaemia and hypoplasia. ABIN-1 deficient cells are hypersensitive to tumour necrosis factor (TNF)-induced programmed cell death, and TNF deficiency rescues ABIN-1 deficient embryos. ABIN-1 inhibits caspase 8 recruitment to FADD (Fas-associated death domain-containing protein) in TNF-induced signalling complexes, preventing caspase 8 cleavage and programmed cell death. Moreover, ABIN-1 directly binds polyubiquitin chains and this ubiquitin sensing activity is required for ABIN-1's anti-apoptotic activity. These studies provide insights into how ubiquitination and ubiquitin sensing proteins regulate cellular and organismal survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642523/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642523/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oshima, Shigeru -- Turer, Emre E -- Callahan, Joseph A -- Chai, Sophia -- Advincula, Rommel -- Barrera, Julio -- Shifrin, Nataliya -- Lee, Bettina -- Benedict Yen, T S -- Woo, Tammy -- Malynn, Barbara A -- Ma, Averil -- R01 DK071939/DK/NIDDK NIH HHS/ -- R01 DK071939-01/DK/NIDDK NIH HHS/ -- R01 DK071939-02/DK/NIDDK NIH HHS/ -- R01 DK071939-03/DK/NIDDK NIH HHS/ -- R01 DK071939-04/DK/NIDDK NIH HHS/ -- England -- Nature. 2009 Feb 12;457(7231):906-9. doi: 10.1038/nature07575. Epub 2008 Dec 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California at San Francisco, 513 Parnassus Avenue, S-1057, San Francisco, California 94143-0451, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19060883" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Apoptosis/*physiology ; Cell Line ; DNA-Binding Proteins/chemistry/*metabolism ; Embryonic Development/genetics/*physiology ; Gene Expression Regulation, Developmental ; Humans ; Intracellular Signaling Peptides and Proteins/chemistry/metabolism ; Jurkat Cells ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Sequence Alignment ; Tumor Necrosis Factor-alpha/metabolism ; Ubiquitin/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-11-03
    Description: During pregnancy, maternal pancreatic islets grow to match dynamic physiological demands, but the mechanisms regulating adaptive islet growth in this setting are poorly understood. Here we show that menin, a protein previously characterized as an endocrine tumor suppressor and transcriptional regulator, controls islet growth in pregnant mice. Pregnancy stimulated proliferation of maternal pancreatic islet beta-cells that was accompanied by reduced islet levels of menin and its targets. Transgenic expression of menin in maternal beta-cells prevented islet expansion and led to hyperglycemia and impaired glucose tolerance, hallmark features of gestational diabetes. Prolactin, a hormonal regulator of pregnancy, repressed islet menin levels and stimulated beta-cell proliferation. These results expand our understanding of mechanisms underlying diabetes pathogenesis and reveal potential targets for therapy in diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karnik, Satyajit K -- Chen, Hainan -- McLean, Graeme W -- Heit, Jeremy J -- Gu, Xueying -- Zhang, Andrew Y -- Fontaine, Magali -- Yen, Michael H -- Kim, Seung K -- T32DK007217-32/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):806-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975067" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Diabetes, Gestational/*etiology/metabolism ; Female ; Humans ; Insulin/metabolism ; Insulin-Secreting Cells/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Obesity/metabolism ; Pregnancy ; Prolactin/metabolism ; Proto-Oncogene Proteins/*physiology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: The crew exploration vehicle (CEV) service module (SM) main engine plume heating is analyzed using multiple numerical tools. The chemical equilibrium compositions and applications (CEA) code is used to compute the flow field inside the engine nozzle. The plume expansion into ambient atmosphere is simulated using an axisymmetric space-time conservation element and solution element (CE/SE) Euler code, a computational fluid dynamics (CFD) software. The thermal analysis including both convection and radiation heat transfers from the hot gas inside the engine nozzle and gas radiation from the plume is performed using Thermal Desktop. Three SM configurations, Lockheed Martin (LM) designed 604, 605, and 606 configurations, are considered. Design of multilayer insulation (MLI) for the stowed solar arrays, which is subject to plume heating from the main engine, among the passive thermal control system (PTCS), are proposed and validated.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2007-215049 , TFAWS 07-1012 , E-16260 , Thermal and Fluids Analysis Workshop (TFAWS) 2007; 10-14 Seo, 2007; Warrensville Heights, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 39th AIAA Thermophysics Conference; Jun 25, 2007 - Jun 28, 2007; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The use of a flow augmented thermal management system for entry and re-entr environments is one method for reducing heat and drag loads. This concept relies on jet penetration from supersonic and hypersonic counterflowing jets that could significantly weaken and disperse the shock-wave system of the spacecraft flow field. The objective of this research effort is to conduct parametric studies of the supersonic flow over a 2.6% scale model of the Apollo capsule, with and without the counterflowing jet, using time-accurate and steady-state computational fluid dynamics simulations. The numerical studies, including different freestream Mach number angle of attack counterflowing jet mass flow rate, and nozzle configurations, were performed to examine their effect on the drag and beat loads and to explore the counternowing jet condition. The numerical results were compared with the test data obtained from transonic blow-down wind-tunnel experiments conducted independently at NASA MSFC.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 39th AIAA Thermophysics Conference; Jun 25, 2007 - Jun 28, 2007; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The objective of this effort is to develop an efficient and accurate computational methodology to predict both detailed and global thermo-fluid environments of a single now element in a hypothetical solid-core nuclear thermal thrust chamber assembly, Several numerical and multi-physics thermo-fluid models, such as chemical reactions, turbulence, conjugate heat transfer, porosity, and power generation, were incorporated into an unstructured-grid, pressure-based computational fluid dynamics solver. The numerical simulations of a single now element provide a detailed thermo-fluid environment for thermal stress estimation and insight for possible occurrence of mid-section corrosion. In addition, detailed conjugate heat transfer simulations were employed to develop the porosity models for efficient pressure drop and thermal load calculations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 39th AIAA Thermophysics Conference; Jun 25, 2007 - Jun 28, 2007; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Thermal analyses are performed on the liquid hydrogen (LH2) tank designed for an unmanned aerial vehicle (UAV) powered by solar arrays and a regenerative proton-exchange membrane (PEM) fuel cell. A 14-day cruise mission at a 65,000 ft altitude is considered. Thermal analysis provides the thermal loads on the tank system and the boiling-off rates of LH2. Different approaches are being considered to minimize the boiling-off rates of the LH2. It includes an evacuated multilayer insulation (MLI) versus aerogel insulation on the LH2 tank and aluminum versus stainless steel spacer rings between the inner and outer tank. The resulting boil-off rates of LH2 provided by the one-dimensional model and three-dimensional finite element analysis (FEA) on the tank system are presented and compared to validate the results of the three-dimensional FEA. It concludes that heat flux through penetrations by conduction is as significant as that through insulation around the tank. The tank system with MLI insulation and stainless steel spacer rings result in the lowest boiling-off rate of LH2.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2007-214675 , AIAA Paper 2007-1218 , E-15811 , 45th Aerospace Sciences Meeting and Exhibit; Jan 08, 2007 - Jan 11, 2007; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics methodology. Formulations for heat transfer in solids and porous media were implemented and anchored. A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of hydrogen dissociation and recombination on heat transfer and thrust performance. The formulations and preliminary results on both aspects are presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2006-2927 , 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference; Jun 05, 2006 - Jun 08, 2006; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2009-215464 , TFAWS08-1013 , E-16610
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-11
    Description: Three-dimensional conjugate heat transfer analyses on the manifold located upstream of the ramjet fuel injector are performed using CFdesign, a finite-element computational fluid dynamics (CFD) software. The flow field of the hot fuel (JP-7) flowing through the manifold is simulated and the wall temperature of the manifold is computed. The three-dimensional numerical results of the fuel temperature are compared with those obtained using a one-dimensional analysis based on empirical equations, and they showed a good agreement. The numerical results revealed that it takes around 30 to 40 sec to reach the equilibrium where the fuel temperature has dropped about 3 F from the inlet to the exit of the manifold.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2006-214455 , E-15719 , TFAWS06-1036
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...