ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Instytut Oceanologii Polska Akademia Nauk, Sopot  (3)
  • 2020-2022
  • 2005-2009  (3)
Collection
Years
  • 2020-2022
  • 2005-2009  (3)
Year
  • 1
    Publication Date: 2019-09-23
    Description: The thermal stratification of the upper water layers in the Baltic Sea varies seasonally in response to the annual cycle of solar heating and wind-induced mixing. In winter, the stratification down to the halocline is almost completely eroded by convection and strong wind mixing. Monthly averaged temperature profiles obtained from the ICES hydrographic database were used to study the long-term variability (1950 to 2005) of winter water mass formation in different deep basins of the Baltic Sea east of the island of Bornholm. Besides strong interannual variability of deep winter water temperatures, the last two decades show a positive trend (increase of 1-1.5°C). Correlations of winter surface temperatures to temperatures of the winter water body located directly above or within the top of the halocline were strongly positive until the autumn months. Such a close coupling allows sea surface temperatures in winter to be used to forecast the seasonal development of the thermal signature in deeper layers with a high degree of confidence. The most significant impact of winter sea surface temperatures on the thermal signature in this depth range can be assigned to February/March. Stronger solar heating during spring and summer results in thermal stratification of the water column leading to a complete decoupling of surface and deep winter water temperatures. Based on laboratory experiments, temperature-dependent relationships were utilised to analyse interannual variations of biological processes with special emphasis on the upper trophic levels (e.g., stage-specific developmental rates of zooplankton and survival rates of fish eggs).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Instytut Oceanologii Polska Akademia Nauk, Sopot
    In:  Oceanologia, 50 (2). pp. 205-220.
    Publication Date: 2017-02-03
    Description: Existing coupled biophysical models for Baltic larval cod drift, growth and survival use idealised constructed mean prey fields of nauplius distributions. These simulations revealed the best feeding conditions for Baltic cod larvae longer than 6 mm. For shorter, first feeding larvae (between 4.5 and 6 mm) pronounced differences in growth and survival were observed, which depend on food availability and to a lesser degree on ambient temperature. We performed runs with an Individual-based Model (IBM) for Baltic cod larvae in order to demonstrate how natural variability in prey abundance influences the survival success of first feeding larvae. In the Baltic, this larval stage lives mainly between 20 and 40 m depth and feeds exclusively on the nauplii of different calanoid copepods (Acartia spp., Pseudocalanus acuspes, Temora longicornis and Centropages hamatus). Prey data obtained from vertically stratified samples in the Bornholm Basin (Baltic Sea) in 2001 and 2002 indicate a strong variability at spatial and temporal scales. We calculated larval survival and growth in relation to natural variation of prey fields, i.e. species-specific nauplius abundance. The results of the model runs yielded larval survival rates from 60 to 100% if the mean size of nauplii species was taken and lower survival if prey consisted of early nauplius stages only.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Instytut Oceanologii Polska Akademia Nauk, Sopot
    In:  Oceanologia, 51 (1). pp. 119-140.
    Publication Date: 2017-02-03
    Description: The abundance of the sardine in the North Sea suddenly increased after 1995. Since 2002, the sardine has been spawning regularly in the German Bight, and all its life stages can be found in the area. The larval feeding ecology of two small pelagic clupeiform species with very similar life histories was investigated, the particular aim being to determine signs of food overlap. The distribution and feeding of sprat and sardine larvae were investigated during late spring 2003 on two transects covering a wide range of environmental conditions in the German Bight. Larvae co-occurred at all the stations investigated. Sprat and sardine larvae shared a wide range of prey types. Gut fullness and feeding success were similar in both species; however, potential food competition is avoided to some extent by different habitat preferences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...