ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-01
    Description: The finite angular width of Doppler sonar beams introduces errors into the measurement of ocean velocity from moving ships. These errors are exacerbated as ship speed increases and as the acoustic scatter field becomes more inhomogeneous in space. Zooplanktonic scatters often reside in distinct quasi-isopycnal scattering layers. When measured from a moving ship, such layers appear to have a distinct velocity signature, even if the ocean is quiescent. Here, this effect is explored in a simple analytic model and a least squares algorithm is presented for remediating its signature. The algorithm corrects the measured velocity at any given depth, with the correction being a weighted sum of the depth gradient of log acoustic intensity at surrounding depths. The correction weights are a property of the specific sonar beam pattern. Once determined, they can be considered constant. The algorithm, when applied to a 50-kHz sonar on the Research Vessel (R/V) Roger Revelle, is found to remove roughly 90% of the error in vertical wavenumber spectra of shear. More sophisticated algorithms can be developed as experience with the present approach is gained.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-01-01
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-01
    Description: Internal tide generation, propagation, and dissipation are investigated in Luzon Strait, a system of two quasi-parallel ridges situated between Taiwan and the Philippines. Two profiling moorings deployed for about 20 days and a set of nineteen 36-h lowered ADCP–CTD time series stations allowed separate measurement of diurnal and semidiurnal internal tide signals. Measurements were concentrated on a northern line, where the ridge spacing was approximately equal to the mode-1 wavelength for semidiurnal motions, and a southern line, where the spacing was approximately two-thirds that. The authors contrast the two sites to emphasize the potential importance of resonance between generation sites. Throughout Luzon Strait, baroclinic energy, energy fluxes, and turbulent dissipation were some of the strongest ever measured. Peak-to-peak baroclinic velocity and vertical displacements often exceeded 2 m s−1 and 300 m, respectively. Energy fluxes exceeding 60 kW m−1 were measured at spring tide at the western end of the southern line. On the northern line, where the western ridge generates appreciable eastward-moving signals, net energy flux between the ridges was much smaller, exhibiting a nearly standing wave pattern. Overturns tens to hundreds of meters high were observed at almost all stations. Associated dissipation was elevated in the bottom 500–1000 m but was strongest by far atop the western ridge on the northern line, where 〉500-m overturns resulted in dissipation exceeding 2 × 10−6 W kg−1 (implying diapycnal diffusivity Kρ 〉 0.2 m2 s−1). Integrated dissipation at this location is comparable to conversion and flux divergence terms in the energy budget. The authors speculate that resonance between the two ridges may partly explain the energetic motions and heightened dissipation.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-01
    Description: A strong internal tide is generated in the Luzon Strait that radiates westward to impact the continental shelf of the South China Sea. Mooring data in 1500-m depth on the continental slope show a fortnightly averaged incoming tidal flux of 12 kW m−1, and a mooring on a broad plateau on the slope finds a similar flux as an upper bound. Of this, 5.5 kW m−1 is in the diurnal tide and 3.5 kW m−1 is in the semidiurnal tide, with the remainder in higher-frequency motions. Turbulence dissipation may be as high as 3 kW m−1. Local generation is estimated from a linear model to be less than 1 kW m−1. The continental slope is supercritical with respect to the diurnal tide, implying that there may be significant back reflection into the basin. Comparing the low-mode energy of a horizontal standing wave at the mooring to the energy flux indicates that perhaps one-third of the incoming diurnal tidal energy is reflected. Conversely, the slope is subcritical with respect to the semidiurnal tide, and the observed reflection is very weak. A surprising observation is that, despite significant diurnal vertical-mode-2 incident energy flux, this energy did not reflect; most of the reflection was in mode 1. The observations are consistent with a linear scattering model for supercritical topography. Large fractions of incoming energy can reflect depending on both the geometry of the shelfbreak and the phase between the modal components of the incoming flux. If the incident mode-1 and mode-2 waves are in phase at the shelf break, there is substantial transmission onto the shelf; if they are out of phase, there is almost 100% reflection. The observations of the diurnal tide at the site are consistent with the first case: weak reflection, with most of it in mode 1 and almost no reflection in mode 2. The sensitivity of the reflection on the phase between incident components significantly complicates the prediction of reflections from continental shelves. Finally, a somewhat incidental observation is that the shape of the continental slope has large regions that are near critical to the dominant diurnal tide. This implicates the internal tide in shaping of the continental slope.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-02-01
    Description: Most of the M2 internal tide energy generated at the Hawaiian Ridge radiates away in modes 1 and 2, but direct observation of these propagating waves is complicated by the complexity of the bathymetry at the generation region and by the presence of interference patterns. Observations from satellite altimetry, a tomographic array, and the R/P FLIP taken during the Farfield Program of the Hawaiian Ocean Mixing Experiment (HOME) are found to be in good agreement with the output of a high-resolution primitive equation model, simulating the generation and propagation of internal tides. The model shows that different modes are generated with different amplitudes along complex topography. Multiple sources produce internal tides that sum constructively and destructively as they propagate. The major generation sites can be identified using a simplified 2D idealized knife-edge ridge model. Four line sources located on the Hawaiian Ridge reproduce the interference pattern of sea surface height and energy flux density fields from the numerical model for modes 1 and 2. Waves from multiple sources and their interference pattern have to be taken into account to correctly interpret in situ observations and satellite altimetry.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-02-10
    Description: Simulations of steady two-dimensional stratified flow over an isolated obstacle are presented where the obstacle is tall enough so that the topographic Froude number, Nhm/Uo ≫1. N is the buoyancy frequency, h m the height of the topography from the channel floor and U o the flow speed infinitely far from the obstacle. As for moderate Nhm/Uo (̃1), a columnar response propagates far up-and downstream, and an arrested lee wave forms at the topography. Upstream, most of the water beneath the crest is blocked, while the moving layer above the crest has a mean velocity Um = UoH/(H-hm). The vertical wavelength implied by this velocity scale, λo = 2φU m/N, predicts dominant vertical scales in the flow. Upstream of the crest there is an accelerated region of fluid approximately λo thick, above which there is a weakly oscillatory flow. Downstream the accelerated region is thicker and has less intense velocities. Similarly, the upstream lift of isopycnals is greatest in the first wavelength near the crest, and weaker above and below. Form drag on the obstacle is dominated by the blocked response, and not on the details of the lee wave, unlike flows with moderate Nh m/Uo. Directly downstream, the lee wave that forms has a vertical wavelength given by λo, except for the deepest lobe which tends to be thicker. This wavelength is small relative to the fluid depth and topographic height, and has a horizontal phase speed cpx = U m, corresponding to an arrested lee wave. When considering the spin-up to steady state, the speed of vertical propagation scales with the vertical component of group velocity cgz = Um, where is the aspect ratio of the topography. This implies a time scale t̂= tNα/2φ for the growth of the lee waves, and that steady state is attained more rapidly with steep topography than shallow, in contrast with linear theory, which does not depend on the aspect ratio. Copyright © 2010 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-01
    Description: Depth–time records of isopycnal vertical strain have been collected from intensive CTD profiling programs on the research platform (R/P) Floating Instrument Platform (FLIP). The associated vertical wavenumber frequency spectrum of strain, when viewed in an isopycnal-following frame, displays a clear spectral gap at low vertical wavenumber, separating the quasigeostrophic (vortical) strain field and the superinertial internal wave continuum. This gap enables both model and linear-filter-based methods for separating the submesoscale and internal wave strain fields. These fields are examined independently in six field programs spanning the period 1983–2002. Vortical and internal wave strain variances are often comparable in the upper thermocline, of order 0.2. However, vortical strain tends to decrease with increasing depth (decreasing buoyancy frequency as ~(N2)1/2, while internal wave strain variance increases as ~(N2)−1/2, exceeding vortical variance by a factor of 5–10 at depths below 500 m. In contrast to strain, the low-frequency spectral gap in the shear spectrum is largely obscured by Doppler-smeared near-inertial motions. The vertical wavenumber spectrum of anticyclonic shear exceeds the cyclonic shear and strain spectra at all scales greater than 10 m. The frequency spectrum of anticyclonic shear exceeds that of both cyclonic shear and strain to frequencies of 0.5 cph, emphasizing the importance of lateral Doppler shifting of near-inertial shear. The limited Doppler shifting of the vortical strain field implies surprisingly small submesoscale aspect ratios: kH/kz ~ 0.001, Burger numbers Br = kH N/kzf ~ 0.1. Submesoscale potential vorticity is dominated by vertical straining rather than the vertical component of relative vorticity. The inferred rms fluctuation of fluid vorticity is far less for the vortical field than for the internal wavefield.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-01
    Description: The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10−4) m2 s−1 and above 1000-m depth is O(10−5) m2 s−1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-01
    Description: Nonlinear energy transfers from the semidiurnal internal tide to high-mode, near-diurnal motions are documented near Kaena Ridge, Hawaii, an energetic generation site for the baroclinic tide. Data were collected aboard the Research Floating Instrument Platform (FLIP) over a 35-day period during the fall of 2002, as part of the Hawaii Ocean Mixing Experiment (HOME) Nearfield program. Energy transfer terms for a PSI resonant interaction at midlatitude are identified and compared to those for near-inertial PSI close to the M2 critical latitude. Bispectral techniques are used to demonstrate significant energy transfers in the Nearfield, between the low-mode M2 internal tide and subharmonic waves with frequencies near M2/2 and vertical wavelengths of O(120 m). A novel prefilter is used to test the PSI wavenumber resonance condition, which requires the subharmonic waves to propagate in opposite vertical directions. Depth–time maps of the interactions, formed by directly estimating the energy transfer terms, show that energy is transferred predominantly from the tide to subharmonic waves, but numerous reverse energy transfers are also found. A net forward energy transfer rate of 2 × 10−9 W kg−1 is found below 400 m. The suggestion is that the HOME observations of energy transfer from the tide to subharmonic waves represent a first step in the open-ocean energy cascade. Observed PSI transfer rates could account for a small but significant fraction of the turbulent dissipation of the tide within 60 km of Kaena Ridge. Further extrapolation suggests that integrated PSI energy transfers equatorward of the M2 critical latitude may be comparable to PSI energy transfers previously observed near 28.8°N.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-09-01
    Description: A simple parameterization for tidal dissipation near supercritical topography, designed to be applied at deep midocean ridges, is presented. In this parameterization, radiation of internal tides is quantified using a linear knife-edge model. Vertical internal wave modes that have nonrotating phase speeds slower than the tidal advection speed are assumed to dissipate locally, primarily because of hydraulic effects near the ridge crest. Evidence for high modes being dissipated is given in idealized numerical models of tidal flow over a Gaussian ridge. These idealized models also give guidance for where in the water column the predicted dissipation should be placed. The dissipation recipe holds if the Coriolis frequency f is varied, as long as hN/W ≫ f, where N is the stratification, h is the topographic height, and W is a width scale. This parameterization is not applicable to shallower topography, which has significantly more dissipation because near-critical processes dominate the observed turbulence. The parameterization compares well against simulations of tidal dissipation at the Kauai ridge but predicts less dissipation than estimated from observations of the full Hawaiian ridge, perhaps because of unparameterized wave–wave interactions.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...