ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022  (7)
  • 2010-2014  (129)
Collection
Years
Year
  • 1
    Publication Date: 2013-04-07
    Description: [1]  In this study we quantify the contribution of individual large-scale waves to ionospheric electrodynamics, and examine the dependence of the ionospheric perturbations on solar activity. We focus on migrating diurnal tide (DW1) plus mean winds, migrating semidiurnal tide (SW2), quasi-stationary planetary wave 1 (QSPW1), and nonmigrating semidiurnal westward wave 1 (SW1) under northern winter conditions, when QSPW1 and SW1 are climatologically strong. From TIME-GCM simulations under solar minimum conditions, it is found that the mean winds and DW1 produce a wave 2 pattern in equatorial vertical E  ×  B drift that is upward in the morning and around dusk. The modeled SW2 also produces a wave 2 pattern in the ionospheric vertical drift that is nearly a half wave cycle out of phase with that due to mean winds and DW1. SW1 can cause large vertical drifts around dawn, while QSPW1 does not have any direct impact on the vertical drift. Wind components of both SW2 and SW1 become large at mid to high latitudes in the E-region, and kernel functions obtained from numerical experiments reveal that they can significantly affect the equatorial ion drift, likely through modulating the E-region wind dynamo. The most evident changes of total ionospheric vertical drift when solar activity is increased are seen around dawn and dusk, reflecting the more dominant role of large F-region Pedersen conductivity and of the F-region dynamo under high solar activity. Therefore, the lower atmosphere driving of the ionospheric variability is more evident under solar minimum conditions, not only because variability is more identifiable in a quieter background, but also because the E-region wind dynamo is more significant. These numerical experiments also demonstrate that the amplitudes, phases and latitudinal and vertical structures of large-scale waves are important in quantifying the ionospheric responses.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-18
    Description: Author(s): C. Liu (刘晨), S. Y. Wang (王守宇), B. Qi (亓斌), D. P. Sun (孙大鹏), S. Wang (王硕), C. J. Xu (徐长江), L. Liu (刘雷), P. Zhang (张盼), Z. Q. Li (李志泉), B. Wang (王彬), X. C. Shen (沈晓晨), M. R. Qin (秦慕容), H. L. Liu (刘红亮), Y. Gao (高原), L. H. Zhu (竺礼华), X. G. Wu (吴晓光), G. S. Li (李广生), C. Y. He (贺创业), and Y. Zheng (郑云) High spin states in 108 Ag have been studied via in-beam γ spectroscopy techniques using the 104 Ru( 7 Li, 3 n ) reaction. The previously known level scheme has been extended, and a new band structure has been established. The configurations have been tentatively assigned to all observed rotational bands.... [Phys. Rev. C 88, 037301] Published Tue Sep 17, 2013
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-15
    Description: For the first time a mesoscale-resolving whole atmosphere general circulation model (GCM) has been developed, using the NCAR Whole Atmosphere Community Climate Model (WACCM) with ~0.25° horizontal resolution and 0.1 scale height vertical resolution above the middle stratosphere (higher resolution below). This is made possible by the high accuracy and high scalability of the spectral element dynamical core from the High-Order Method Modeling Environment (HOMME). For the simulated January-February period, the latitude-height structure and the magnitudes of the temperature variance compare well with those deduced from SABER observations. The simulation reveals the increasing dominance of gravity waves (GWs) at higher altitudes through both the height dependence of the kinetic energy spectra, which display a steeper slope (~-3) in the stratosphere and an increasingly shallower slope above, and the increasing spatial extent of GWs (including a planetary-scale extent of a concentric GW excited by a tropical cyclone) at higher altitudes. GW impacts on the large-scale flow is evaluated in terms of zonal mean zonal wind and tides: with no GW drag parameterized in the simulations, forcing by resolved GWs does reverse the summer mesospheric wind, albeit at an altitude higher than climatology, and only slows down the winter mesospheric wind without closing it. The hemispheric structures and magnitudes of diurnal and semidiurnal migrating tides compare favorably with observations.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-06-24
    Description: Author(s): H. L. Liu, F. R. Xu, P. M. Walker, and C. A. Bertulani We investigate the influence of deformation on the possible occurrence of long-lived K isomers in Hf isotopes around N =116 , using configuration-constrained calculations of potential-energy surfaces. Despite having reduced shape elongation, the multiquasiparticle states in 186,188 Hf remain moderately... [Phys. Rev. C 83, 067303] Published Thu Jun 23, 2011
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-14
    Description: The momentum budget of the migrating diurnal tide (DW1) at the vernal equinox is studied using the Whole Atmosphere Community Climate Model, version 4 (WACCM4). Classical tidal theory provides an appropriate first-order prediction of the DW1 structure, while gravity wave (GW) forcing and advection are the two most dominant terms in the momentum equation that account for the discrepancies between classical tidal theory and the calculation based on the full primitive equations. It differs from the conclusion by McLandress (2002a) that the parameterized GW effect is substantially weaker than advection terms based on the Canadian Middle Atmosphere Model (CMAM). In the region where DW1 maintains a large amplitude, GW forcing in the wave breaking region always damps DW1 and advances its phase. The linear advection largely determined by the latitudinal shear of the zonal mean zonal wind makes a dominant contribution to the phase change of DW1 in the zonal wind compared to the GW forcing and nonlinear advection. However, nonlinear advection is more important than GW forcing and linear advection in modulating the amplitude and phase of DW1 in the meridional wind. The DW1 amplitudes in temperature and winds are smaller than the TIMED observations, suggesting that GW forcing is overestimated in the WACCM4 and results in a large damping of DW1.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-08-24
    Description: Whole Atmosphere Community Climate Model (WACCM) simulations are used to investigate solar and lunar tide changes in the mesosphere and lower thermosphere (MLT) that occur in response to sudden stratosphere warmings (SSWs). The average tidal response is demonstrated based on 23 moderate to strong Northern Hemisphere SSWs. The migrating semidiurnal lunar tide is enhanced globally during SSWs, with the largest enhancements (∼60–70%) occurring at mid to high latitudes in the Northern Hemisphere. Enhancements in the migrating solar semidiurnal tide (SW2) also occur up to an altitude of 120 km. Above this altitude, the SW2 decreases in response to SSWs. The SW2 enhancements are 40–50%, making them smaller in a relative sense than the enhancements in the migrating semidiurnal lunar tide. Changes in nonmigrating solar tides are, on average, generally small and the only nonmigrating tides that exhibit changes greater than 20% are the diurnal tide with zonal wave number 0 (D0) and the westward propagating semidiurnal tide with zonal wave number 1 (SW1). D0 is decreased by ∼20–30% at low latitudes, while SW1 exhibits a similar magnitude enhancement at mid to high latitudes in both hemispheres. The tidal changes are attributed to a combination of changes in the zonal mean zonal winds, changes in ozone forcing of the SW2, and nonlinear planetary wave-tide interactions. We further investigate the influence of the lunar tide enhancements on generating perturbations in the low latitude ionosphere during SSWs by using the WACCM-X thermosphere to drive an ionosphere-electrodynamics model. For both solar maximum and solar minimum simulations, the changes in the equatorial vertical plasma drift velocity are similar to observations when the lunar tide is included in the simulations. However, when the lunar tide is removed from the simulations, the low latitude ionosphere response to SSWs is unclear and the characteristic behavior of the low latitude ionosphere perturbations that is seen in observations is no longer apparent. Our results thus indicate the importance of variability in the lunar tide during SSWs, especially for the coupling between SSWs and perturbations in the low latitude ionosphere.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-08-22
    Description: Author(s): Y.-C. Wen, K.-J. Wang, H.-H. Chang, J.-Y. Luo, C.-C. Shen, H.-L. Liu, C.-K. Sun, M.-J. Wang, and M.-K. Wu [Phys. Rev. Lett. 109, 089902] Published Tue Aug 21, 2012
    Keywords: Errata
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-07
    Description: Author(s): H. L. Liu, F. R. Xu, and P. M. Walker Total Routhian surface calculations have been performed to investigate rapidly rotating transfermium nuclei, the heaviest nuclei accessible by detailed spectroscopy experiments. The observed fast alignment in 252 No and slow alignment in 254 No are well reproduced by the calculations incorporating hig... [Phys. Rev. C 86, 011301] Published Fri Jul 06, 2012
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-06-30
    Description: The atmospheric semidiurnal lunar tide is added to the Whole Atmosphere Community Climate Model (WACCM) through inclusion of an additional forcing mechanism. The simulated climatology of the semidiurnal lunar tide in surface pressure and zonal and meridional winds in the mesosphere and lower thermosphere (MLT) is presented. Prior observations and modeling results demonstrate characteristic seasonal and latitudinal variability of the semidiurnal lunar tide in surface pressure, and the WACCM reproduces these features. In the MLT, the WACCM simulations reveal a primarily semiannual variation with maxima near December and June solstice. The peak amplitudes in the MLT zonal and meridional winds are ∼5–10 ms−1, and occur at mid to high latitudes in the summer hemisphere. We have further compared the WACCM simulation results in the MLT with those from the Global Scale Wave Model (GSWM). The overall latitude and seasonal variations are consistent between these two models. However, the GSWM peak amplitudes are ∼2–3 times larger than those in the WACCM. This is thought to be related to deficiencies in the GSWM and not the WACCM simulations. With the exception of smaller amplitudes during Northern Hemisphere summer months, the WACCM simulations of the semidiurnal lunar tide in the MLT are also shown to be generally consistent with prior observations and modeling results. The reduced amplitudes in the WACCM simulations during Northern Hemisphere summer months are thought to be related to the influence of the cold-pole bias in WACCM on the propagation of the lunar tide during these months.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-06-01
    Description: To investigate day-to-day variability in the mesosphere and lower thermosphere (MLT), an idealized simulation of a six-day westward propagating zonal wave number-1 planetary wave is performed using the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM). The six-day planetary wave introduces a six-day periodicity in the zonal mean atmosphere, migrating and nonmigrating tides, as well as in secondary waves that are produced by nonlinear planetary wave-tide interactions. We have further used the linear Global Scale Wave Model (GSWM) to isolate the effect of how the day-to-day changes in zonal mean zonal winds may influence tides in the MLT. The most significant changes are observed in the migrating diurnal tide (DW1), eastward propagating nonmigrating tides with zonal wave numbers-2 and -3 (DE2 and DE3), and a 20 hr eastward propagating wave with zonal wave number-2 (20E2). Because we have included the lower atmospheric source of nonmigrating tides, DE2 and DE3 are present with relatively large amplitudes in the MLT, even in the absence of planetary wave forcing. The 20E2 wave is produced by the nonlinear interaction between the DE3 and the six-day planetary wave, and its large amplitude indicates the importance of including the realistic spectra of nonmigrating tides in numerical simulations of planetary waves. The GSWM simulations reveal that the DW1 is not significantly influenced by the changes in the zonal mean winds. We thus conclude that the DW1 changes are driven by a combination of changes due to nonlinear interaction with the six-day planetary wave as well as changes due to zonal asymmetries that result from the six-day planetary wave. The six-day planetary wave induced changes in zonal mean zonal winds lead to a general reduction in the amplitude of DE2 and DE3, and introduce a slight periodic behavior in these tides. The effect of changing zonal mean zonal winds appears to be the primary driver of the changes in the DE2. However, for DE3, although the changes that can be attributed to zonal mean zonal wind variability are not insignificant, the primary driver of the DE3 perturbations appears to be the nonlinear interaction with the six-day planetary wave. Last, we demonstrate that the day-to-day changes in the DE3 introduce similar day-to-day changes in the daytime wave number-4 longitude structure in the low-latitude ionosphere. These results indicate that short-term variability in the low-latitude ionosphere is likely to be driven by similar short-term variability in nonmigrating tides in the MLT.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...