ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Campi Flegrei caldera
  • Elsevier  (2)
  • Nature Publishing Group
  • 2020-2022  (1)
  • 2010-2014  (1)
  • 1980-1984
  • 1970-1974
Collection
  • Articles  (2)
Publisher
Years
  • 2020-2022  (1)
  • 2010-2014  (1)
  • 1980-1984
  • 1970-1974
  • 2005-2009  (1)
Year
  • 1
    Publication Date: 2021-05-12
    Description: Sr-isotopic microanalysis has been performed on selected minerals from the Campi Flegrei caldera, together with Sr and Nd isotopic ratio determinations on bulk mineral and glass fractions. The aim was a better characterization of the chemically homogeneous, but isotopically distinct magmatic components which fed volcanic eruptions of the caldera over the past 5 ka, in order to enhance our knowledge about one of the most dangerous volcanoes on Earth.Information on the involved magmatic endmembers, unobtainable by analyzing the isotopic composition of whole rock samples and bulk mineral fractions, has been acquired through high-precision determination of 87Sr/86Sr on single crystals and microdrilled mineral powders. We focused our investigations on the products emplaced during the Astroni 6 eruption (4.23 cal ka BP), assumed representative of the expected event in case of renewed volcanic activity in the Campi Flegrei caldera. Data on single crystals and microdrilled mineral powders have been compared with Sr and Nd isotopic compositions of bulk mineral fractions from productsemplaced during the whole Astroni activity, which included seven distinct eruptions. The 87Sr/86Sr ratios of single crystals and microdrilled mineral powders are in the 0.7060 to 0.7076 range, much wider than that of bulk mineral fractions, which range from 0.7066 to 0.7076. Moreover, the Sr isotopic ratios are inversely correlated to 143Nd/144Nd. The new data allow us to better define the magmatic endmembers involved in mingling/mixing processes that occurred prior to/during the Astroni activity. One magmatic endmember, characterized by average 87Sr/86Sr ratio of ~0.70750, was quite common in the past 15 ka activity of the Campi Flegrei caldera; the other, as evidenced by the isotopic composition of single feldspar and clinopyroxene crystals, is less enriched in radiogenic Sr (87Sr/86Sr ~0.70724). The latter is interpreted to represent a new magmatic component that entered the Campi Flegrei caldera feeding system in the past 5 ka, the previously recognized Astroni 6 component. However, diopside crystals in Astroni 6 are characterized by even lower 87Sr/86Sr, in the range of 0.7060–0.7068 and by the highest 143Nd/144Nd ratios measured in the products of Astroni activity. These diopsides may represent another common magmatic component, as they have been found in most of the Phlegrean Volcanic District products emplaced over the past 75 ka. These diopsides, crystallized in a mantle-derived mafic magma, were entrapped by the Astroni 6 magma during ascent, before it mingled/mixed with the more differentiated and enriched in radiogenic Sr resident magma, thus attaining an intermediate Sr-Nd isotopic fingerprint. These results have an important outcome on the understanding of the volcano behavior, as renewed activity can be triggered by the arrival of fresh magma in the feeding system that would mingle/mix with the resident magma. Such an event may be able to start an unrest phase at the volcano that could last for years or decades, perhaps culminating in a new eruption.
    Description: Published
    Description: 24-37
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Magma mixing ; Microdrilling ; Sr-isotopic microanalysis ; Astroni eruptions ; Campi Flegrei caldera
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: To develop a model of both the structure and evolution of the Campi Flegrei caldera (CFc) magmatic feeding system, geochronological, geochemical and Sr, Nd, Pb and B isotopic data of representative volcanic products of the past 15 ka have been combined with geophysical and melt inclusion literature data, structural setting and dynamics of the resurgent caldera. According to previous petrological data, the CFc magmatic feeding system consists of a deep reservoir, in which mantle-derived K-basaltic parental magmas differentiate to shoshonite, latite and trachyte, through combined crustal contamination and fractional crystallization processes, and shallowreservoirswhere the evolvedmagmas further differentiate andmingle/mix before eruptions. The Sr,Nd, Pb, and B isotope data allowrecognition of three distinctmagmatic components.One component is believedto be residualmagmafromtheNeapolitanYellowTuff (NYT) caldera forming eruption. The NYT component (87Sr/86Sr of 0.70750–53, 143Nd/144Nd ratio of ca. 0.51246, 206Pb/204Pb of ca. 19.04 and δ11B of ca. –7.9‰), has been the most prevalent component over the past 15 ka being mixed, in most cases, with the other two components. One of these other components is best recognized in the Minopoli 2 magma, first erupted 10 ka ago. Minopoli 2 magma is shoshonitic in composition and is the most enriched in radiogenic Sr (87Sr/86Sr of ca. 0.70860) and unradiogenic Nd and Pb (143Nd/144Nd ratio of ca. 0.51236, 206Pb/204Pb of ca. 18.90), and is characterised by δ11B value of ca. –7.32‰. The third component is trachytic in composition and has higher 206Pb/204Pb (ca. 19.08), lower 87Sr/86Sr (ca. 0.70726) and δ11B (−9.8‰) and higher 143Nd/144Nd (ca. 0.51250), with respect to the NYT component. This third component is best recognized in the Astroni 6 magma and did not appear until ca. 4 ka. The identified isotopically distinct magmatic components were erupted in different sectors of the CFc. During both I (b14.9–9.5 ka) and II (8.6–8.2 ka) epochs of volcanic activity,magmas similar to the NYT component, and those resulting from mixing between Minopoli 2 and NYT components were erupted from vents located mostly on the marginal faults of the NYT caldera. During the III epoch (4.8–3.8 ka) magmas either similar to NYT, or resulting from mixing between Astroni 6 and NYT components were erupted from vents located along faults bordering the La Starza resurgent block and, subordinately, the NYT caldera. Moreover, magmas resulting from mixing betweenMinopoli 2 and NYT components were erupted fromvents located along NE–SW regional faults activated during caldera resurgence. The inferred present structure of the feeding system is characterised by a deep reservoir, whose top is at about 8 kmdepth, that hosts shoshonitic–trachyticmagmas. Remnants of the NYT magma reside at shallower depth in different sectors of the crust underlying CFc, and were sometimes intercepted by volatile-rich magmas of deep provenance during the three epochs of CFc volcanic activity.
    Description: Published
    Description: 227-241
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei caldera ; Magmatic system ; Caldera structure ; Geochemistry ; Isotopes ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...