ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques  (1)
  • Cell Line, Tumor  (1)
  • 2020-2022
  • 2010-2014  (2)
  • 2000-2004
  • 1
    Publication Date: 2014-08-12
    Description: Phospholipids (PLs) with polyunsaturated acyl chains are extremely abundant in a few specialized cellular organelles such as synaptic vesicles and photoreceptor discs, but their effect on membrane properties is poorly understood. Here, we found that polyunsaturated PLs increased the ability of dynamin and endophilin to deform and vesiculate synthetic membranes. When cells incorporated polyunsaturated fatty acids into PLs, the plasma membrane became more amenable to deformation by a pulling force and the rate of endocytosis was accelerated, in particular, under conditions in which cholesterol was limiting. Molecular dynamics simulations and biochemical measurements indicated that polyunsaturated PLs adapted their conformation to membrane curvature. Thus, by reducing the energetic cost of membrane bending and fission, polyunsaturated PLs may help to support rapid endocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pinot, Mathieu -- Vanni, Stefano -- Pagnotta, Sophie -- Lacas-Gervais, Sandra -- Payet, Laurie-Anne -- Ferreira, Thierry -- Gautier, Romain -- Goud, Bruno -- Antonny, Bruno -- Barelli, Helene -- New York, N.Y. -- Science. 2014 Aug 8;345(6197):693-7. doi: 10.1126/science.1255288.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Pharmacologie Moleculaire et Cellulaire, Universite Nice Sophia Antipolis and CNRS, 06560 Valbonne, France. Unite Mixte de Recherche 144, Institut Curie and CNRS, F-75248 Paris, France. ; Institut de Pharmacologie Moleculaire et Cellulaire, Universite Nice Sophia Antipolis and CNRS, 06560 Valbonne, France. ; Centre Commun de Microscopie Appliquee, Universite Nice Sophia Antipolis, Parc Valrose, 06000 Nice, France. ; Signalisation et Transports Ioniques Membranaires, Universite de Poitiers and CNRS, Poitiers, France. ; Unite Mixte de Recherche 144, Institut Curie and CNRS, F-75248 Paris, France. ; Institut de Pharmacologie Moleculaire et Cellulaire, Universite Nice Sophia Antipolis and CNRS, 06560 Valbonne, France. antonny@ipmc.cnrs.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25104391" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/metabolism ; Animals ; Cell Line, Tumor ; Cell Membrane/chemistry/*physiology ; Dynamins/chemistry/metabolism ; *Endocytosis ; Fatty Acids, Unsaturated/chemistry/*physiology ; Humans ; Membranes, Artificial ; Mice ; Molecular Dynamics Simulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-12
    Description: Accepted for publication in Journal of Geophysical Research. Copyright (2010) American Geophysical Union.
    Description: Carbon dioxide (CO2) diffuse degassing structures (DDS) at Furnas Volcano (São Miguel Island, Azores) are mostly associated with the main fumarolic fields, evidence that CO2 soil degassing is the surface expression of rising steam from the hydrothermal system. Locations with anomalous CO2 flux are mainly controlled by tectonic structures oriented WNW-ESE and NW-SE and by the geomorphology of the volcano, as evidenced by several DDS located in depressed areas associated with crater margins. Hydrothermal soil CO2 emissions in Furnas volcano are estimated to be ~ 968 t d-1. Discrimination between biogenic and hydrothermal CO2 was determined using a 1 statistical approach and the carbon isotope composition of the CO2 efflux. Different sampling densities were used to evaluate uncertainty in the estimation of the total CO2 flux, and showed that a low density of points may not be adequate to quantify soil emanations from a relatively small DDS. Thermal energy release associated to diffuse degassing at Furnas caldera is about 118 MW (from an area of ~ 4.8 km2) based on the H2O/CO2 ratio in fumarolic gas. The DDS affect also Furnas and Ribeira Quente villages, which are located inside the caldera and in the south flank of the volcano, respectively. At these sites, 58% and 98% of the houses are built over hydrothermal CO2 emanations, and the populations are at risk due to potential high concentrations of CO2 accumulating inside the dwellings. Keywords: Soil diffuse degassing; soil CO2 flux; emission rates; Azores archipelago 2
    Description: Published
    Description: B12208
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Description: open
    Keywords: Soil CO2 emissions ; Furnas volcano ; volcano monitoring. ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...