ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.
    Keywords: Exobiology; Lunar and Planetary Science and Exploration
    Type: JSC-CN-35555 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: Jupiter's moon Europa is a prime target for the search for potential signs of life in the solar system. The Europa Lander Science Definition Team Report outlined investigations and measurement requirements on a future Europa Lander and has led us to consider application of powerful techniques such as pyrolysis and derivatization gas chromatography mass spectrometry (GC-MS) and laser desorption mass spectrometry (LD-MS) to elucidate the organic composition of near-surface ice and minerals. Definitive identification of chemical biosignatures using such techniques is strongly enabled by the use of various chemicals, such as perfluorotributylamine (PFTBA) for the MS calibration, -cyano-hydroxycinnamic acid (CHCA) for matrix-assisted laser desorption and ionization (MALDI) and N,N-dimethylformamide dimethyl acetal (DMF-DMA), N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) and tetramethylammonium hydroxide (TMAH) for wet chemistry GC-MS protocols. The jovian radiation environment is known to represent a uniquely challenging risk to mission performance and lifetime, principally due to high radiation levels. To assess the potential ionizing radiation damage to these important chemicals, we tested their effectiveness following gamma radiation exposure doses up to the anticipated Europa Lander rating requirement of 300 krad(Si). The chemicals were sealed in glass ampules under vacuum (〈10 mTorr), to reduce trapped oxygen gas, as the oxidation by O2 may be enhanced in the presence of radiation. We report that all five chemicals exposed to total ionizing doses of 0, 150 and 300 krad(Si) maintained their full effectiveness, and no significant degradation was observed.
    Keywords: Exobiology; Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN71751 , Planetary and Space Science (ISSN 0032-0633); 175; 1-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human Research Program investigations, and even life detection experiments for astrobiology missions.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36371 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...