ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (9)
  • Oxford University Press  (4)
  • PTJ
  • 2020-2022  (1)
  • 2015-2019  (12)
  • 1
    Publication Date: 2020-10-20
    Description: Summary Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the full waveform inversion is a non-linear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely non-linear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a non-linear method should be used. We propose to solve this strong non-linear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is idealy parameterized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity-depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from travel time tomography and is kept unchanged during inversion; the 1-D model parameterization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity-depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km/s in the lower crust to 8 km/s of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2016-06-08
    Description: Powerful subduction zone earthquakes rupture thousands of square kilometres along continental margins but at certain locations earthquake rupture terminates. To date, detailed knowledge of the parameters that govern seismic rupture and aftershocks is still incomplete. On 2015 September 16, the Mw 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here, we analyse the temporal and spatial pattern of the coseismic rupture and aftershocks in relation to the tectonic setting in the earthquake area. Aftershocks cluster around the area of maximum coseismic slip, in particular in lateral and downdip direction. During the first 24 hr after the main shock, aftershocks migrated in both lateral directions with velocities of approximately 2.5 and 5 km hr−1. At the southern rupture boundary, aftershocks cluster around individual subducted seamounts that are related to the downthrusting Juan Fernández Ridge. In the northern part of the rupture area, aftershocks separate into an upper cluster (above 25 km depth) and a lower cluster (below 35 km depth). This dual seismic–aseismic transition in downdip direction is also observed in the interseismic period suggesting that it may represent a persistent feature for the Central Chilean subduction zone.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: At the eastern end of the Azores-Gloria transform fault system to the southwest of Portugal, the plate boundary between Africa and Iberia is a region where deformation is accommodated over a wide tectonically-active area. The region has unleashed large earthquakes and tsunamis, including the Mw ~ 8.5 Great Lisbon earthquake of 1755. Although the source region of the 1755 earthquake is still disputed, most proposals include a source location in the vicinity of the Horseshoe Abyssal Plain (HAP), which is bounded by the 5000 m high Gorringe Bank (GB). In this study we characterise seismic activity in the region using data recorded by two local networks of ocean-bottom seismometers (OBS). The networks were deployed in the eastern HAP and at the GB. The dataset allowed the detection of 160 local earthquakes. These earthquakes cluster around the GB, to the SW of Cabo Sao Vicente, and in the HAP. Focal depths indicate deep-seated earthquakes, with depths increasing from 20-35 km (mean of 26.1 ± 7.2 km) at the GB to 15-45 km (mean 31.5 km ± 10.5 km) under the HAP. Seismic activity thus extends down to levels that are deeper than those mapped by active seismic profiling, with the majority of events occurring within the mantle. Thermal modelling suggests that temperatures of approximately 600 °C characterise the base of the seismogenic brittle lithosphere at ~45 km depth. The large source depth and thermal structure supports previous suggestions that catastrophic seismic rupture through the lithospheric mantle may indeed occur in the area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 18 (6). pp. 2149-2161.
    Publication Date: 2020-02-06
    Description: We report the results of a two-dimensional tomographic inversion of marine seismic refraction data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity model shows variations in the thickness and properties of the young oceanic crust that are consistent with the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5–2.0 km), which we interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system has been found in the southern half of the MCSC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 (4). pp. 1529-1536.
    Publication Date: 2020-11-04
    Description: Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-05-02
    Description: Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-04
    Description: Three active-source seismic refraction profiles are integrated with morphological and potential field data to place the first regional constraints on the structure of the Kermadec subduction zone. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure previously known as the 32°S boundary. We use residual bathymetry to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5–7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110 ± 20 km) and strike (~005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7–7.3 km s-1. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. We suggest that the Eocene arc did not extend along the current length of the Tonga-Kermadec trench. The Eocene arc was originally connected to the Three Kings Ridge and the CKD was likely formed during separation and easterly translation of an Eocene arc substrate during the early Oligocene. We suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin and along-strike variations in the duration of arc volcanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 45 (20). pp. 11050-11058.
    Publication Date: 2021-02-08
    Description: Ahyi is a fully submerged arc volcano in the Northern Mariana Islands, northwestern Pacific Ocean. In April and May 2014, the volcano erupted over a period of 15 days. Results from direction-of-arrival calculations show that underwater sound phases associated with the episode were recorded as far as Wake Island, where a hydrophone triplet array is operated as part of the International Monitoring System. After a 3.5-hr-long sequence of hydroacoustic precursory events, explosive volcanic activity occurred in two distinct, several-days-long bursts, accompanied by a notable decrease in low-frequency arrivals that may indicate a shift in signal source parameters. Acoustic resolution of the hydrophone data supersedes broadband networks by almost 1 order of magnitude, successfully identifying seismic events at Ahyi as low as 2.5 mb. Total radiated acoustic energy of the eruption is estimated at 9.7 1013 J, which suggests that submarine volcanic activity contributed significantly to the ocean soundscape.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: We present a 2‐D P wave velocity model and a coincident multichannel seismic reflection profile characterizing the structure of the southern Costa Rica margin and incoming Cocos Ridge. The seismic profiles image the ocean and overriding plates from the trench across the entire offshore margin, including the structures involved in the 2002 Osa earthquake. The overriding plate consists of three domains: Domain I displays thin‐skinned deformation of an imbricate thrust system composed of fractured rocks. Domain II shows ~15‐km‐long landward dipping reflection packages and active deformation of the shelf sediment. Domain III is little fractured and appears to be dominated by elastic deformation, overlain by ~2‐km‐thick landward dipping strata. The velocity structure supports the argument that the bulk of the margin is highly consolidated rock. Thick‐skinned tectonics probably causes the uplift of Domains II and III. The oceanic plate shows crustal thickness variations from ~14 km at the trench (Cocos Ridge) to 6–7 km beneath the shelf. We combine (1) interplate geometry and fracturing degree, (2) tectonic stresses and brittle strain, and (3) earthquake locations, to investigate relationships between structure and earthquake generation. The 2002 Osa sequence nucleated at the leading flank of subducting seamounts in the area of highest tectonic overpressure. Both estimated rock fracturing and modeled brittle strain steadily increase from the leading flank of the subducting seamounts to their top, reflecting the progressive damage caused by the seamount. Therefore, the seismicity and structural‐mechanical evolution of the upper plate reflect the downward propagation of the leading edge of seamounts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...