ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 18 (1935), S. 238-242 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 16 (1933), S. 1154-1158 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-03
    Description: The Agricultural Model Intercomparison and Improvement Project (AgMIP) has developed novel methods for Coordinated Global and Regional Assessments (CGRA) of agriculture and food security in a changing world. The present study aims to perform a proof of concept of the CGRA to demonstrate advantages and challenges of the proposed framework. This effort responds to the request by the UN Framework Convention on Climate Change (UNFCCC) for the implications of limiting global temperature increases to 1.5C and 2.0C above pre-industrial conditions. The protocols for the 1.5C/2.0C assessment establish explicit and testable linkages across disciplines and scales, connecting outputs and inputs from the Shared Socio-economic Pathways (SSPs), Representative Agricultural Pathways (RAPs), Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) and Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble scenarios, global gridded crop models, global agricultural economics models, site-based crop models and within-country regional economics models. The CGRA consistently links disciplines, models and scales in order to track the complex chain of climate impacts and identify key vulnerabilities, feedbacks and uncertainties in managing future risk. CGRA proof-of-concept results show that, at the global scale, there are mixed areas of positive and negative simulated wheat and maize yield changes, with declines in some bread basket regions, at both 1.5C and 2.0C. Declines are especially evident in simulations that do not take into account direct CO2 effects on crops. These projected global yield changes mostly resulted in increases in prices and areas of wheat and maize in two global economics models. Regional simulations for 1.5C and 2.0C using site-based crop models had mixed results depending on the region and the crop. In conjunction with price changes from the global economics models, productivity declines in the Punjab, Pakistan, resulted in an increase in vulnerable households and the poverty rate. This article is part of the theme issue The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5C above pre-industrial levels.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN63705 , Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (ISSN 1364-503X ) (e-ISSN 1471-2962); 376; 2119
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Agricultural stakeholders need more credible information on which to base adaptation and mitigation policy decisions. In order to provide this, we must improve the rigor of agricultural modelling. Ensemble approaches can be used to address scale issues and integrated teams can overcome disciplinary silos. The AgMIP Coordinated Global and Regional Assessments of Climate Change and Food Security (CGRA) has the goal to link agricultural systems models using common protocols and scenarios to significantly improve understanding of climate effects on crops, livestock and livelihoods across multiple scales. The AgMIP CGRA assessment brings together experts in climate, crop, livestock, economics, and food security to develop Protocols to guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including, socioeconomic development, greenhouse gas concentrations, and specific pathways of agricultural sector development. Through these approaches, AgMIP partners around the world are providing an evidence base for their stakeholders as they make decisions and investments.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN50534 , Australian Agronomy Conference; Sep 24, 2017 - Sep 28, 2017; Ballarat, Victoria; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A critical omission from climate change impact studies on crop yield is the interaction between soil organic carbon (SOC), nitrogen (N) availability, and carbon dioxide (CO2). We used a multimodel ensemble to predict the effects of SOC and N under different scenarios of temperatures and CO2 concentrations on maize (Zea mays L.) and wheat (Triticum aestivum L.) yield in eight sites across the world. We found that including feedbacks from SOC and N losses due to increased temperatures would reduce yields by 13% in wheat and 19% in maize for a 3C rise temperature with no adaptation practices. These losses correspond to an additional 4.5% (+3C) when compared to crop yield reductions attributed to temperature increase alone. Future CO2 increase to 540 ppm would partially compensate losses by 80% for both maize and wheat at +3C, and by 35% for wheat and 20% for maize at +6C, relative to the baseline CO2 scenario.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN60415 , Agricultural & Environmental Letters (e-ISSN 2471-9625); 3; 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN44917 , Environmental Modelling & Software (ISSN 1364-8152); 96; 335-346
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The large population and major economic assets along New York City's extensive waterfront face exposure to sea level rise (SLR) and coastal flooding. The New York City Panel on Climate Change (NPCC), an advisory group of academic and private-sector experts, provides the city with scientific guidance on future climate risks. Here we highlight current NPCC research on sea level rise, coastal flooding, with some of the City's current and planned responses.Twentieth century SLR in New York City (2.8 cm/decade) exceeded the global average (1.2-1.9 cm/decade), underscoring a greater regional risk. In 2015, the NPCC projected a 2080s SLR of 46-99 cm relative to 2000-2004 (25th -75th percentile) at the Battery, with high-end SLR estimates (90th percentile) of 1.9 m by 2100. Growing evidence of potential instability of the West Antarctic Ice Sheet (WAIS) suggests the possibility of even higher future sea levels. We therefore present a new low probability, yet high impact SLR scenario for New York City, which incorporates these ice sheet instabilities. The new SLR projections will be combined with coastal flood return period curves for the 100-year storm flood levels. Related ongoing research examines changes in storm characteristics, surge--sea level rise interactions, and mapping of neighborhoods at risk.Guided by NPCC findings, New York City undertakes programs to strengthen coastal defenses, tailored to specific neighborhood needs. NPCC in collaboration with the city, continues to investigate vulnerability to extreme climate events, such as inland floods and coastal storms, and to develop stronger links with community-based stakeholder groups. New York City's plans to enhance coastal urban resiliency stand as a model for other urban coastal centers as they prepare for climate change.
    Keywords: Meteorology and Climatology; Oceanography
    Type: GSFC-E-DAA-TN61420 , Symposium on the Urban Environment Meeting; Aug 06, 2018 - Aug 10, 2018; New York, NY; United States|International Conference on Urban Climate; Aug 06, 2018 - Aug 10, 2018; New York, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN46998 , Environmental Research Letters (e-ISSN 1748-9326); 12; 12; 125003
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...