ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5060
    Keywords: Oryza sativa ; Indica-type rice ; genetic engineering ; vitamin A endosperm ; insect resistance ; virus resistance ; fungus resistance ; essential amino acids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Indica-type rice provides the staple food for two billion people in Third World countries. Several problems involved in the stable and sustained production of high quality food cannot be solved by traditional breeding. Methods have been established for gene transfer to Indica rice breeding lines to study possible contributions from genetic engineering. Experiments are in progress on the development of transgenic resistance towards Yellow Stem Borer, resistance towards Rice Tungro Virus, accumulation of provitamin A in the endosperm, increase of essential amino acids in the endosperm such as lysine, cysteine and methionine and resistance towards fungal pests such as Rice Blast and Sheath Blight. Transgenic clones from Indica rice breeding lines have been recovered from several of the approaches mentioned, some of which have been regenerated to plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5060
    Keywords: intergeneric somatic hybrids ; forage grasses ; fescue ; Festuca arundinacea ; F. rubra ; ryegrasses ; Lolium multiflorum ; L. perenne ; Alopecurus pratensis ; species-specific repetitive DNA sequences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Intergeneric symmetric and asymmetric somatic hybrids have been obtained by fusion of metabolically inactivated protoplasts from embryogenic suspension cultures of tall fescue (Festuca arundinacea Schreb.) and unirradiated or 10–500 Gy-irradiated protoplasts from non-morphogenic cell suspensions of Italian ryegrass (Lolium multiflorum Lam.). Genotypically and phenotypically different somatic hybrid Festulolium mature flowering plants were regenerated. Species-specific sequences from F. arundinacea and L. multiflorum being dispersed and evenly-represented in the corresponding genomes were isolated and used for the molecular characterization of the nuclear make-up of the intergeneric, somatic Festulolium plants recovered. The irradiation of Italian ryegrass protoplasts with ≤250 Gy X-rays prior to fusogenic treatment favoured the unidirectional elimination of most or part of the donor chromosomes. Irradiation of L. multiflorum protoplasts with 500 Gy produced highly asymmetric (over 80% donor genome elimination) nuclear hybrids and clones showing a complete loss of donor chromosomes. The RFLP analysis of the organellar composition in symmetric and asymmetric tall fescue (+) Italian ryegrass regenerants confirmed their somatic hybrid character and revealed a bias towards recipient-type organelles when extensive donor nuclear genome elimination had occurred. Approaches aimed at improving persistence of ryegrasses based on asymmetric somatic hybridization with largely sexually-incompatible grass species (F. rubra and Alopecurus pratensis), and at transferring the cytoplasmic male sterility trait by intra- and inter-specific hybridization in L. multiflorum and L. perenne, have been undertaken.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2019-06-18
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-09-22
    Description: Background Cannabis has been used worldwide for centuries for industrial, recreational and medicinal use, however, to date no successful attempts at editing genes involved in cannabinoid biosynthesis have been reported. This study proposes and develops an in silico best practices approach for the design and implementation of genome editing technologies in cannabis to target all genes involved in cannabinoid biosynthesis. Results A large dataset of reference genomes was accessed and mined to determine copy number variation and associated SNP variants for optimum target edit sites for genotype independent editing. Copy number variance and highly polymorphic gene sequences exist in the genome making genome editing using CRISPR, Zinc Fingers and TALENs technically difficult. Evaluation of allele or additional gene copies was determined through nucleotide and amino acid alignments with comparative sequence analysis performed. From determined gene copy number and presence of SNPs, multiple online CRISPR design tools were used to design sgRNA targeting every gene, accompanying allele and homologs throughout all involved pathways to create knockouts for further investigation. Universal sgRNA were designed for highly homologous sequences using MultiTargeter and visualised using Sequencher, creating unique sgRNA avoiding SNP and shared nucleotide locations targeting optimal edit sites. Conclusions Using this framework, the approach has wider applications to all plant species regardless of ploidy number or highly homologous gene sequences. Significance statement Using this framework, a best-practice approach to genome editing is possible in all plant species, including cannabis, delivering a comprehensive in silico evaluation of the cannabinoid pathway diversity from a large set of whole genome sequences. Identification of SNP variants across all genes could improve genome editing potentially leading to novel applications across multiple disciplines, including agriculture and medicine.
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-26
    Description: Background The phytopatogen Claviceps paspali is the causal agent of Ergot disease in Paspalum spp., which includes highly productive forage grasses such as P. dilatatum. This disease impacts dairy and beef production by affecting seed quality and producing mycotoxins that can affect performance in feeding animals. The molecular basis of pathogenicity of C. paspali remains unknown, which makes it more difficult to find solutions for this problem. Secreted proteins are related to fungi virulence and can manipulate plant immunity acting on different subcellular localizations. Therefore, identifying and characterizing secreted proteins in phytopathogenic fungi will provide a better understanding of how they overcome host defense and cause disease. The aim of this work is to analyze the whole genome sequences of three C. paspali isolates to obtain a comparative genome characterization based on possible secreted proteins and pathogenicity factors present in their genome. In planta RNA-seq analysis at an early stage of the interaction of C. paspali with P. dilatatum stigmas was also conducted in order to determine possible secreted proteins expressed in the infection process. Results C. paspali isolates had compact genomes and secretome which accounted for 4.6–4.9% of the predicted proteomes. More than 50% of the predicted secretome had no homology to known proteins. RNA-Seq revealed that three protein-coding genes predicted as secreted have mayor expression changes during 1 dpi vs 4 dpi. Also, three of the first 10 highly expressed genes in both time points were predicted as effector-like. CAZyme-like proteins were found in the predicted secretome and the most abundant family could be associated to pectine degradation. Based on this, pectine could be a main component affected by the cell wall degrading enzymes of C. paspali. Conclusions Based on predictions from DNA sequence and RNA-seq, unique probable secreted proteins and probable pathogenicity factors were identified in C. paspali isolates. This information opens new avenues in the study of the biology of this fungus and how it modulates the interaction with its host. Knowledge of the diversity of the secretome and putative pathogenicity genes should facilitate future research in disease management of Claviceps spp.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...