ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 18 (1935), S. 238-242 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 21 (1981), S. 1167-1170 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The activation energy for sintering of poly(methyl methacrylate) particle pairs is shown to be similar to their activation energy for Newtonian flow. Sintering progress with time is in good agreement with the Frenkel's coalescence theory. Typical sintering shear rates are shown to be very low and potential energy change (two particles) is small in comparison with the surface energy change. These results lead to the conclusion that the coalescence sintering mechanism of amorphous polymers above their glass transition temperature is essentially a Newtonian viscous flow mechanism where surface tension is the major driving force. A periodical phenomenon associated with sintering progress with time is reported and a supporting mechanism is proposed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 21 (1981), S. 582-585 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A quantitative “Round Neck” (RN) model based upon volume balances and considerations of surface tension phenomena is proposed for simulation of coalescence of two spherical polymeric particles; during sintering. This model and an early model developed by Frenkel are compared and evaluated against experimental data to show their suitability to simulate geometrical variations of a particle pair during sintering.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 23 (1983), S. 32-35 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Sintering of amorphous polymer particles above their glasstransition temperature is a slow coalescence process in which surface tension is the main driving force, tending to decrease the total surface area, resisted by the polymer viscosity. The shape, and therefore the boundaries of the coalescing particles, change with time. A numerical finite-element method (FEM) was used to solve the momentum and continuity equations for a coalescing spherical-particles pair. The solution obtained describes a limited sintering time interval with reasonable agreement. Future modifications of the solution technique are suggested in order to extend its validity to longer sintering periods.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 26 (1981), S. 2787-2789 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-29
    Description: Agricultural systems are currently undergoing rapid shifts owing to socioeconomic development, technological change, population growth, economic opportunity, evolving demand for commodities, and the need for sustainability amid global environmental change. It is not sufficient to maintain current harvest levels; rather, there is a need to rapidly increase production in light of a population growing to nearly 10 billion by mid-century and to more than 11 billion by 2100 (FAO, 2016; UN, 2016; Popkin et al., 2012). Current and future agricultural systems are additionally burdened by human-caused climate change, the result of accumulating greenhouse gas and aerosol emissions, ecological destruction, and land use changes that have altered the chemical composition of Earths atmosphere and trapped energy in the Earth system (IPCC, 2013; Porter et al., 2014). This increased energy has already raised average surface temperatures by approximately 1 degree Centigrade (GISTEMP Team, 2017; Hansen et al., 2010), leading early on to the term global warming, but this phenomenon is now more accurately referred to as climate change because it also modifies atmospheric circulation, adjusts regional and seasonal precipitation patterns, and shifts the distribution and characteristics of extreme events (Bindoff et al., 2013; Collins et al., 2013). Food and health systems face increasing risk owing to progressive climate change now manifesting itself as more frequent, severe extreme weather eventsheat waves, droughts, and floods (IPCC, 2013). Often without warning, weather-related shocks can have catastrophic and reverberating impacts on the increasingly exposed global food systemthrough production, processing, distribution, retail, disposal, and waste. Simultaneously, malnutrition and ill health are arising from lack of access to nutritious food, exacerbated in crises such as food price spikes or shortages. For some countries, particularly import-dependent low-income countries, weather shocks and price spikes can lead to social unrest, famine, and migration.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN57244
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Climate impacts on agriculture are of increasing concern in both the scientific and policy communities because of the need to ensure food security for a growing population. A special challenge is posed by the changes in the frequency and intensity of heat-waves, droughts, and episodic rainstorms already underway in many parts of the world. Changes in production are directly linked to such variations in temperature and precipitation during the growing season, and often to offseason changes in weather affecting soil-water storage and availability to crops. This is not an isolated problem but one of both global and regional importance, because of impacts on the livelihoods of smallholder farmers as well as consequences for the world food trade system. This two-part set the Agricultural Model Intercomparison and Improvement Project (AgMIP): Integrated Crop and Economic Assessments is the first to be entirely devoted to AgMIP (www.agmip.org). AgMIP is a major international research program focused on climate change and agriculture. The goal of the two parts is to advance the field by providing detailed information on new simulation techniques and assessments being conducted by this program. It presents information about new methods of global and regional integrated assessment, results from agricultural regions, and adaptation strategies for maintaining food security under changing climate conditions.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN30771
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...