ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_Envi; Polar Terrestrial Environmental Systems @ AWI  (3)
  • ECO2; Sub-seabed CO2 Storage: Impact on Marine Ecosystems  (2)
  • PANGAEA  (5)
  • BioMed Central
  • 2020-2022
  • 2015-2019  (5)
  • 1990-1994
Collection
Keywords
Publisher
  • PANGAEA  (5)
  • BioMed Central
Years
  • 2020-2022
  • 2015-2019  (5)
  • 1990-1994
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schmidt, Mareike; Leipe, Christian; Becker, Fabian; Goslar, Tomasz; Hoelzmann, Philipp; Mingram, Jens; Müller, Stefanie; Tjallingii, Rik; Wagner, Mayke; Tarasov, Pavel E (2018): A multi-proxy palaeolimnological record of the last 16,600 years from coastal Lake Kushu in northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, https://doi.org/10.1016/j.palaeo.2018.11.010
    Publication Date: 2023-03-16
    Description: This supplement contains results of fossil diatom counting and results and methodology of XRF analysis of a sediment core (RK12) from Lake Kushu (Rebun Island) as well as modern water chemistry data and modern diatom counts of samples from Lake Kushu and Hime-numa Pond (Rishiri Island) in northern Hokkaido, Japan.
    Keywords: AWI_Envi; Polar Terrestrial Environmental Systems @ AWI
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Molari, Massimiliano; Guilini, Katja; Lott, Christian; Weber, Miriam; de Beer, Dirk; Meyer, Stefanie; Ramette, Alban; Wegener, Gunter; Wenzhöfer, Frank; Martin, Daniel; Cibic, Tamara; De Vittor, Cinzia; Vanreusel, Ann; Boetius, Antje (2018): CO2 leakage alters biogeochemical and ecological functions of submarine sands. Science Advances, 4(2), eaao2040, https://doi.org/10.1126/sciadv.aao2040
    Publication Date: 2023-05-12
    Description: Subseabed CO2 storage is considered a future climate change mitigation technology. We investigated the ecological consequences of CO2 leakage for a marine benthic ecosystem. For the first time with a multidisciplinary integrated study, we tested hypotheses derived from a meta-analysis of previous experimental and in situ high-CO2 impact studies. For this, we compared ecological functions of naturally CO2-vented seafloor off the Mediterranean island Panarea (Tyrrhenian Sea, Italy) to those of nonvented sands, with a focus on biogeochemical processes and microbial and faunal community composition. High CO2 fluxes (up to 4 to 7 mol CO2 m−2 hour−1) dissolved all sedimentary carbonate, and comigration of silicate and iron led to local increases of microphytobenthos productivity (+450%) and standing stocks (+300%). Despite the higher food availability, faunal biomass (−80%) and trophic diversity were substantially lower compared to those at the reference site. Bacterial communities were also structurally and functionally affected, most notably in the composition of heterotrophs and microbial sulfate reduction rates (−90%). The observed ecological effects of CO2 leakage on submarine sands were reproduced with medium-term transplant experiments. This study assesses indicators of environmental impact by CO2 leakage and finds that community compositions and important ecological functions are permanently altered under high CO2.
    Keywords: ECO2; Sub-seabed CO2 Storage: Impact on Marine Ecosystems
    Type: Dataset
    Format: application/zip, 43 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fernandoy, Francisco; Tetzner, Dieter; Meyer, Hanno; Gacitúa, Guisella; Hoffmann, Kirstin; Falk, Ulrike; Lambert, Fabrice; MacDonell, Shelley (2018): New insights into the use of stable water isotopes at the northern Antarctic Peninsula as a tool for regional climate studies. The Cryosphere, 12(3), 1069-1090, https://doi.org/10.5194/tc-12-1069-2018
    Publication Date: 2023-12-22
    Description: The Antarctic Peninsula is one of the most challenging regions of Antarctica from a climatological perspective, owing to the recent atmospheric and oceanic warming. The steep topography and a lack of long-term and in situ meteorological observations complicate extrapolation of existing climate models to the sub-regional scale. Here, we present new evidence from the northern Antarctic Peninsula to demonstrate how stable water isotopes of firn cores and recent precipitation samples can reveal climatic processes related to nearby oceanic and atmospheric conditions. A noticeable effect of the sea ice cover on local temperatures and atmospheric modes, in particular the Southern Annular Mode (SAM), is demonstrated. In years with large sea ice extension in winter (negative SAM anomaly), an inversion layer in the lower troposphere develops at the coastal zone. Therefore, an isotope-temperature relationship valid for all seasons cannot be concluded. The delta-T relationship rather depends on seasonal variability of oceanic conditions. Transitional seasons (autumn and spring) are both stable seasons with an isotope-temperature gradient of +0.69 per mil/°C. The firn stable isotope composition reveals that the near-surface temperature at the Antarctic Peninsula shows a decreasing trend (-0.33 °C/y) between 2008 and 2014. Moreover, the deuterium excess (d excess) has been demonstrated to be a reliable indicator of seasonal oceanic conditions, and therefore suitable to improve a firn age model based on seasonal d excess variability. The annual accumulation rate in this region is highly variable, ranging between 1060 kg/m**2/y and 2470 kg/m**2/y from 2008 to 2014. The combination of isotopic and meteorological data is key for reconstructing recent climatic conditions with a high temporal resolution in polar regions where no direct observation exists.
    Keywords: AWI_Envi; Polar Terrestrial Environmental Systems @ AWI
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoffmann, Kirstin; Fernandoy, Francisco; Meyer, Hanno; Thomas, Elizabeth R; Aliaga, Marcelo; Tetzner, Dieter; Freitag, Johannes; Opel, Thomas; Arigony-Neto, Jorge; Göbel, Christian Florian; Jaña, Ricardo; Rodríguez Oroz, Delia; Tuckwell, Rebecca; Ludlow, Emily; McConnell, Joseph R; Schneider, Christoph (2020): Stable water isotopes and accumulation rates in the Union Glacier region, Ellsworth Mountains, West Antarctica, over the last 35 years. The Cryosphere, 14(3), 881-904, https://doi.org/10.5194/tc-14-881-2020
    Publication Date: 2024-01-09
    Description: Stable water isotope composition (δ¹⁸O, δD, d excess) and accumulation rates of six firn cores from Union Glacier, Ellsworth Mountains, West Antarctica
    Keywords: AWI_Envi; Polar Terrestrial Environmental Systems @ AWI
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schade, Hanna; Mevenkamp, Lisa; Guilini, Katja; Meyer, Stefanie; Gorb, Stanislav N; Abele, Doris; Vanreusel, Ann; Melzner, Frank (2016): Simulated leakage of high pCO2 water negatively impacts bivalve dominated infaunal communities from the Western Baltic Sea. Scientific Reports, 6, 31447, https://doi.org/10.1038/srep31447
    Publication Date: 2024-03-06
    Description: Sandy communities were exposed to six different seawater pCO2 regimes for a total of three months (17.12.2011–06.03.2012) in a climate - controlled room. Six header tanks were continuously supplied with filtered seawater from Kiel Fjord, each one connected to six experimental units (EU) ensuring continuous seawater supply. Each EU consisted of a round plastic container with a volume of 12.5 L containing ca. 9.5 L of sediment and an overlying water column of ca. 3 L. The lower 10 cm of the sediment consisted of sieved sand taken from a local beach (Kiel, Falckenstein: 54°23,66 N; 10°11.56 E) while the upper 10 cm consisted of surface sediment from the station at which the experimental animals were sampled to resemble natural conditions as well as to provide naturally occurring microbial and meiofauna communities. Bivalves and sediment were sampled in Kiel Fjord at Falckenstein with a Van Veen grab in 1–2 m depth and kept in holding basins at 9 °C before being placed in EUs. Numbers per EU simulated a natural size distribution: 5 M. arenaria (size classes: 0.5–1 cm: 2 animals; 1–1.5 cm: 2 animals; 2–2.5 cm: 1 animal), 1 M. balthica, and 40 C. edule (size classes: 0–0.5 cm: 3 animals; 0.5–1 cm: 18 animals; 1–1.5 cm: 11 animals; 1.5–2 cm: 7 animals; 2–2.5 cm: 1 animal). Small gastropods (exclusively Hydrobia spp.) were abundant with ~10 individuals per EU. Due to their small size (〈 0.5 mm) they were randomly distributed within all EUs with the sieved sediment. Due to the natural low diversity of the Baltic, the density of other macrofauna individuals was 〈 1 individuals per m². These low abundant species (e.g. nereid polychaetes, pharid bivalve species) were excluded from the experiment. The EUs were kept in a seawater flow-through system for two weeks under control conditions prior to the experiment to allow proper acclimatization of biogeochemistry and the faunal community. Seawater pH was maintained in the header tanks using a pH feedback system (IKS Aquastar, iksComput- ersysteme GmbH, Karlsbad, Germany). Treatment levels were achieved through continuous addition of acidified water from the header tanks into the overlaying seawater of each EU and included levels of 900 µatm (control, pH 7.8 NBS scale), 1,500 µatm (pH 7.7), 2,900 µatm (pH 7.4), 6,600 µatm (pH 7.0), 12,800 µatm (pH 6.7), and 24,400 µatm (pH 6.4). 900 µatm was used as a control due to the high background pCO2 in Kiel Fjord. To support the bivalve nutritional needs unicellular algae (Rhodomonas sp.) were cultured and added continuously into the header tanks via a peristaltic pump, thus maintaining a stable concentration of 3,500–4,000 cells ml−1 within header tanks. A flow rate of 100 ml min−1 was provided to each EU from the respective header tank via gravity feed. Throughout the experiment, pH, salinity, temperature, and flow rate were measured daily in each replicate. Salinity and temperature fluctuated in accordance with naturally occurring changes in Kiel Fjord seawater (14.6–20.5 psu and 4.3–8.9 °C, respectively). Light conditions were similar for all EUs. Dead animals were removed daily and behaviour of bivalves (presence/absence on the sediment surface) was noted every other day starting in the third experimental week. Carbonate chemistry and algae concentration in the EUs were measured weekly. Dissolved inorganic carbon (CT) was measured using an Automated Infrared Inorganic Carbon Analyzer (AIRICA, Marianda, Kiel, Germany). Seawater chemistry (pCO2 and calcium carbonate saturation state) was then calculated according to the guide to best practices for ocean CO2 measurements, using CO2SYS57 with pH (NBS scale) and CT, temperature, salinity, and first and second dissociation constants of carbonic acid in seawater.
    Keywords: ECO2; Sub-seabed CO2 Storage: Impact on Marine Ecosystems
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...