ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-27
    Description: Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north‐east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O) and hydrogen (δ2H), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow‐through‐dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow‐through kettle holes through which the recharge takes place from one side and discharge from the other side.
    Description: The prevailing hydrological processes influencing the kettle holes in the Uckermark region in the north‐east of Germany were investigated using the stable isotopes of oxygen and hydrogen. The possible contribution of the groundwater inflow into the kettle holes was characterized via evaporation/inflow (E/I) ratios. A conceptual model portraying hydrologic connectivity between different types of kettle holes and in relation their adjacent shallow groundwater domain was provided. image
    Keywords: 551.48 ; evaporation ; groundwater inflow ; kettle hole ; stable water isotope ; surface–groundwater interactions ; Uckermark region ; kettle holes ; hydrological processes
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Eos, Trans., Am. Geophys. Un., Hannover, Dt. Geophys. Ges. e. V., vol. 79, no. 45, pp. 545, 548, 549, pp. L15S14, (ISSN: 1340-4202)
    Publication Date: 1998
    Keywords: Plate tectonics ; Geodesy ; Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Global Positioning System ; GeodesyYSSEA ; NUVEL-1A ; Indonesia ; Singapur ; IGS ; LePichon ; Pichon
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-12
    Description: To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of propulsion elements. Liquid rocket engines (LREs) are comprised of a thrust chamber and nozzle extension as illustrated in figure 1 for the J2X upper stage engine. Development of the J2X engine, designed for the Ares I launch vehicle, is currently being incorporated on the Space Launch System. A nozzle extension is attached to the combustion chamber to obtain the expansion ratio needed to increase specific impulse. If the nozzle extension could be printed as one piece using free-form additive manufacturing (AM) processes, rather than the current method of forming welded parts, a considerable time savings could be realized. Not only would this provide a more homogenous microstructure than a welded structure, but could also greatly shorten the overall fabrication time. The main objective of this study is to fabricate test specimens using a pulsed arc source and solid wire as shown in figure 2. The mechanical properties of these specimens will be compared with those fabricated using the powder bed, selective laser melting technology at NASA Marshall Space Flight Center. As printed components become larger, maintaining a constant temperature during the build process becomes critical. This predictive capability will require modeling of the moving heat source as illustrated in figure 3. Predictive understanding of the heat profile will allow a constant temperature to be maintained as a function of height from substrate while printing complex shapes. In addition, to avoid slumping, this will also allow better control of the microstructural development and hence the properties. Figure 4 shows a preliminary comparison of the mechanical properties obtained.
    Keywords: Astronautics (General); Launch Vehicles and Launch Operations
    Type: George C. Marshall Space Flight Center Research and Technology Report 2014; 172-173; NASA/TM-2015-218204
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Split path gearboxes can be attractive alternatives to the common planetary designs for rotorcraft, but because they have seen little use, they are relatively high risk designs. To help reduce the risk of fielding a rotorcraft with a split path gearbox, the vibration and dynamic characteristics of such a gearbox were studied. A mathematical model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the natural frequencies and vibration energy of the gearbox. The first design variable, shaft angle, had little influence on the natural frequencies. The second variable, mesh phasing, had a strong effect on the levels of vibration energy, with phase angles of 0 deg and 180 deg producing low vibration levels. The third design variable, the stiffness of the shafts connecting the spur gears to the helical pinions, strongly influenced the natural frequencies of some of the vibration modes, including two of the dominant modes. We found that, to achieve the lowest level of vibration energy, the natural frequencies of these two dominant modes should be less than those of the main excitation sources.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA-TM-106875 , E-9498 , NAS 1.15:106875 , ARL-TR-723 , AIAA PAPER 95-3048 , Joint Propulsion Conference; Jul 10, 1995 - Jul 12, 1995; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M17-6414 , Space Commerce Conference and Exposition (SpaceCom 2017); Dec 05, 2017 - Dec 07, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operations/training, verification and validation (V&V), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.
    Keywords: Spacecraft Design, Testing and Performance; Computer Programming and Software
    Type: GSFC-E-DAA-TN27815 , SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-12-05
    Description: No abstract available
    Keywords: Metals and Metallic Materials
    Type: M19-7653 , TCT Korea 2019 Conference; Oct 16, 2019 - Oct 17, 2019; Changwon; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...