ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (3)
  • Elsevier  (2)
  • Wiley  (1)
  • Frontiers Media
  • Springer Nature
  • 2020-2022
  • 2015-2019  (2)
  • 2010-2014  (1)
  • 2005-2009
  • 1990-1994
  • 1985-1989
  • 1975-1979
  • 1950-1954
Sammlung
Datenquelle
Erscheinungszeitraum
  • 2020-2022
  • 2015-2019  (2)
  • 2010-2014  (1)
  • 2005-2009
  • 1990-1994
  • +
Jahr
  • 1
    Publikationsdatum: 2020-02-06
    Beschreibung: Highlights • We review the knowledge on modern high-latitude planktic foraminifers. • Subpolar species currently invade higher latitudes. • Climate change affects phenology, seawater pH, and carbon turnover. • Modern planktic foraminifers are briefly discussed for their paleoceanographic significance. Abstract Planktic foraminifers can be sensitive indicators of the changing environment including both the Arctic Ocean and Southern Ocean. Due to variability in their ecology, biology, test characteristics, and fossil preservation in marine sediments, they serve as valuable archives in paleoceanography and climate geochemistry over the geologic time scale. Foraminifers are sensitive to, and can therefore provide proxy data on ambient water temperature, salinity, carbonate chemistry, and trophic conditions through shifts in assemblage (species) composition and the shell chemistry of individual specimens. Production and dissolution of the calcareous shell, as well as growth and remineralization of the cytoplasm, affect the carbonate counter pump and to a lesser extent the soft-tissue pump, at varying regional and temporal scales. Diversity of planktic foraminifers in polar waters is low in comparison to lower latitudes and is limited to three native species: Neogloboquadrina pachyderma, Turborotalita quinqueloba, and Globigerina bulloides, of which N. pachyderma is best adapted to polar conditions in the surface ocean. Neogloboquadrina pachyderma hibernates in brine channels in the lower layers of the Antarctic sea ice, a strategy that is presently undescribed in the Arctic. In open Antarctic and Arctic surface waters T. quinqueloba and G. bulloides increase in abundance at lower polar to subpolar latitudes and Globigerinita uvula, Turborotalita humilis, Globigerinita glutinata, Globorotalia inflata, and Globorotalia crassaformis complement the assemblages. Over the past two to three decades there has been a marked increase in the abundance of Orcadia riedeli and G. uvula in the subpolar and polar Indian Ocean, as well as in the northern North Atlantic. This paper presents a review of the knowledge of polar and subpolar planktic foraminifers. Particular emphasis is placed on the response of foraminifers to modern warming and ocean acidification at high latitudes and the implications for data interpretation in paleoceanography and paleoclimate research.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Elsevier
    In:  Quaternary International, 258 . pp. 30-44. Date online first: October 2011
    Publikationsdatum: 2016-09-19
    Beschreibung: Climatic consequences of the Young Toba Tuff (YTT) eruption about 73 ka are a crucial argument in the current discussion about the fate of modern humans, especially in Africa and Asia. Earth system model (ESM) simulations of the YTT eruption are used to investigate its regional climate impacts, in particular focusing on areas relevant to human evolutionary issues during that time. Uncertainties concerning the stratospheric sulphur emission for the YTT eruption are addressed by comparing ESM simulations of a 100 times Pinatubo-like eruption as an upper and a 3 times Pinatubo-like (Tambora) eruption as a lower estimate. Information about transient changes in vegetation types after the YTT eruption are obtained by forcing an offline dynamical global vegetation model with the climate anomalies simulated by the ESM under both glacial and interglacial background climate conditions. The simulated temperature changes in those areas that were inhabited by humans suggest thermal discomfort, but not a real challenge for survival. Precipitation is reduced in all regions during the first two years but recovers quickly thereafter. Some catchments in these regions (Ganges/Brahmaputra, Nile), experience an over-compensation in precipitation during the third to fifth post-eruption years which is also reflected in anomalously strong river runoffs. Change in vegetation composition may have created the biggest pressure on humans, who had to adapt to more open space with fewer trees and more grasses for some decades especially in the African regions. The strongest environmental impacts of the YTT eruption are simulated under interglacial background conditions suggesting that the climate effects of the YTT eruption did not impact humans on a major scale and for a period long enough to have dramatic consequences for their survival.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-01-03
    Beschreibung: A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...