ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry
  • Church of England, Sermons.
  • Conformational analysis
  • Death, Sermons.
  • Plasma and Beam Physics
  • SO2
  • Stromboli
  • 2020-2024  (1)
  • 2020-2022  (1)
  • 1
    Publication Date: 2020-06-25
    Description: Two paroxysmal explosions occurred at Stromboli volcano in the Summer 2019, the first of which, on July 3, caused one fatality and some injuries. Within the 56 days between the two paroxysmal explosions, effusive activity from vents located in the summit area of the volcano occurred. No significant changes in routinely monitored parameters were detected before the paroxysmal explosions. However, we have calculated the polarization and the fractal dimension time series of the seismic signals from November 15, 2018 to September 15, 2019 and we have recognized variations that preceded the paroxysmal activity. In addition, we have defined a new parameter, based on RSAM estimation, related to the Very Long Period events, called VLP size, by means of which we have noticed significant variations through the whole month preceding the paroxysm of July 3. In the short term, we have analyzed the signals of a borehole strainmeter installed on the island, obtaining automatic triggers 10 minutes and 7.5 minutes before the July 3 and the August 28 paroxysms, respectively. The results of this study highlight mid-term seismic precursors of paroxysmal activity and provide valuable evidence for the development of an early warning system for paroxysmal explosions based on strainmeter measurements
    Description: This work benefited from funds of the EU (DG ECHO) Project EVE n. 826292 and was partially supported by the project INGV-FISR-2017 “Sale Operative Integrate e Reti di Monitoraggio del Futuro: l’INGV 2.0”. The data used in this study were provided by the Istituto Nazionale di Geofisica e Vulcanologia (Osservatorio Vesuviano, Osservatorio Etneo). The authors are also grateful to the Italian Presidenza del Consiglio dei Ministri- Dipartimento della Protezione Civile (DPC) for supporting the monitoring activities at Stromboli.
    Description: Published
    Description: 10296
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Stromboli ; volcano ; precursors ; early warning ; seismic precursor
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-26
    Description: We used two and a half years long SO2 flux record, obtained using permanent ultraviolet cameras, to characterize changes in degassing dynamics at Mt. Etna volcano from summer 2014 to the end of 2016. Volcanic activity at Mt. Etna was characterized by persistent open-vent degassing periodically interrupted by intense paroxysmal lava fountaining events (in August 2014, December 2015, and May 2016). Results revealed systematic SO2 emission patterns prior, during, and after Etna’s paroxysmal phases, allowing us to identify thresholds between pre-syn-and post-eruptive degassing regimes. The SO2 flux typically peaked during a lava fountain: in the 18 May 2016 example, the averaged SO2 degassing rate was ~158 kg/s, the peak emission was ~260 kg/s, and the total released SO2 mass was ~1700 tons (in 3h). Paroxysmal explosive activity at NSE crater on 11-15 August 2014 was also associated with intense syneruptive SO2 degassing (at 30-40 kg/s levels on a daily average), and was preceded by onset in degassing activity at the same crater 4 days before. During paroxysmal activity on 3-5 December 2015, the SO2 fluxes peaked at 54-103 kg/s from VOR crater, and was preceded by a sizable increase from 10 kg/s (end of November) up to 45.5 kg/s, two days before. The May 16-25 2016 paroxysmal activity was characterized by intense degassing ~2 times higher than the 2016 average (~18 kg/s) and preceded by mild but detectable SO2 flux increases more than one month before its onset. Taken together, our observations, when combined with independent geophysical (thermal and seismic) evidence, allow us to fully characterize the Etna’s degassing dynamics and contribute to our understanding of its shallow plumbing system.
    Description: Published
    Description: Catania
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Keywords: SO2 ; Mt. Etna volcano ; permanent ultraviolet cameras
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...