ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-18
    Description: We describe ongoing searches for intermediate-mass black holes with MBH ≈ 10–105 M⊙. We review a range of search mechanisms, both dynamical and those that rely on accretion signatures. We find the following conclusions: ▪  Dynamical and accretion signatures alike point to a high fraction of 109–1010 M⊙ galaxies hosting black holes with MBH∼ 105 M⊙. In contrast, there are no solid detections of black holes in globular clusters. ▪  There are few observational constraints on black holes in any environment with MBH ≈ 100–104 M⊙. ▪  Considering low-mass galaxies with dynamical black hole masses and constraining limits, we find that the MBH–σ* relation continues unbroken to MBH ∼105 M⊙, albeit with large scatter. We believe the scatter is at least partially driven by a broad range in black hole masses, because the occupation fraction appears to be relatively high in these galaxies. ▪  We fold the observed scaling relations with our empirical limits on occupation fraction and the galaxy mass function to put observational bounds on the black hole mass function in galaxy nuclei. ▪  We are pessimistic that local demographic observations of galaxy nuclei alone could constrain seeding mechanisms, although either high-redshift luminosity functions or robust measurements of off-nuclear black holes could begin to discriminate models.
    Print ISSN: 0066-4146
    Electronic ISSN: 1545-4282
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-08
    Description: A surge in research focused on understanding the physical principles governing the formation, properties, and function of membraneless compartments has occurred over the past decade. Compartments such as the nucleolus, stress granules, and nuclear speckles have been designated as biomolecular condensates to describe their shared property of spatially concentrating biomolecules. Although this research has historically been carried out in animal and fungal systems, recent work has begun to explore whether these same principles are relevant in plants. Effectively understanding and studying biomolecular condensates require interdisciplinary expertise that spans cell biology, biochemistry, and condensed matter physics and biophysics. As such, some involved concepts may be unfamiliar to any given individual. This review focuses on introducing concepts essential to the study of biomolecular condensates and phase separation for biologists seeking to carry out research in this area and further examines aspects of biomolecular condensates that are relevant to plant systems. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1543-5008
    Electronic ISSN: 1545-2123
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...