ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (35)
  • AGU (American Geophysical Union)  (10)
  • Copernicus  (2)
  • ELSEVIER SCIENCE BV  (1)
  • 2020-2024  (28)
  • 2020-2022  (3)
  • 2000-2004  (13)
  • 1995-1999  (3)
  • 1990-1994  (1)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2020-04-27
    Description: Due to its accurate and precise character, spectrophotometric pH detection is a common technique applied in measurement methods for carbonate system parameters. However, impurities in the used pH indicator dyes can influence the measurements quality. During our work described here, we focused on impacts of impurities in the pH indicator dye bromocresol green (BCG) on spectrophotometric seawater total alkalinity (AT) measurements. In order to evaluate the extent of such influences, purified BCG served as a reference. First, a high-performance liquid chromatography (HPLC) purification method for BCG was developed as such a method did not exist at the time of this study. An analysis of BCG dye from four different vendors with this method revealed different types and quantities of impurities. After successful purification, AT measurements with purified and unpurified BCG were carried out using the novel autonomous analyzer CONTROS HydroFIA® TA. Long-term measurements in the laboratory revealed a direct influence of impurity types and quantities on the drift behavior of the analyzer. The purer the BCG, the smaller was the AT increase per measurement. The observed drift is generally caused by deposits in the optical pathway mainly generated by the impurities. However, the analyzers drift behavior could not be fully overcome. Furthermore, we could show that a certain impurity type in some indicator dyes changed the drift pattern from linear to nonlinear, which can impair long-term deployments of the system. Consequently, such indicators are impractical for these applications. Laboratory performance characterization experiments revealed no improvement of the measurement quality (precision and bias) by using purified BCG as long as the impurities of the unpurified dye do not exceed a quantity of 2 % (relationship of peak areas in the chromatogram). However, BCG with impurity quantities higher than 6 % provided AT values which failed fundamental quality requirements. In conclusion, to gain optimal AT measurements especially during long-term deployments, an indicator purification is not necessarily required as long as the purchased dye has a purity level of at least 98 % and is free of the named impurity type. Consequently, high-quality AT measurements do not require pure but the purest BCG that is purchasable.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-23
    Description: The ocean and inland waters are two separate regimes, with concentrations in greenhouse gases differing on orders of magnitude between them. Together, they create the land–ocean aquatic continuum (LOAC), which comprises itself largely of areas with little to no data with regards to understanding the global carbon system. Reasons for this include remote and inaccessible sample locations, often tedious methods that require collection of water samples and subsequent analysis in the lab, and the complex interplay of biological, physical and chemical processes. This has led to large inconsistencies, increasing errors and has inevitably lead to potentially false upscaling. A set-up of multiple pre-existing oceanographic sensors allowing for highly detailed and accurate measurements was successfully deployed in oceanic to remote inland regions over extreme concentration ranges. The set-up consists of four sensors simultaneously measuring pCO2, pCH4 (both flow-through, membrane-based non-dispersive infrared (NDIR) or tunable diode laser absorption spectroscopy (TDLAS) sensors), O2 and a thermosalinograph at high resolution from the same water source. The flexibility of the system allowed for deployment from freshwater to open ocean conditions on varying vessel sizes, where we managed to capture day–night cycles, repeat transects and also delineate small-scale variability. Our work demonstrates the need for increased spatiotemporal monitoring and shows a way of homogenizing methods and data streams in the ocean and limnic realms.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 24 . pp. 1763-1766.
    Publication Date: 2018-02-13
    Description: The partial pressure of CO2 (pCO2) was measured during the 1995 South-West Monsoon in the Arabian Sea. The Arabian Sea was characterized throughout by a moderate supersaturation of 12–30 µatm. The stable atmospheric pCO2 level was around 345 µatm. An extreme supersaturation was found in areas of coastal upwelling off the Omani coast with pCO2 peak values in surface waters of 750 µatm. Such two-fold saturation (218%) is rarely found elsewhere in open ocean environments. We also encountered cold upwelled water 300 nm off the Omani coast in the region of Ekman pumping, which was also characterized by a strongly elevated seawater pCO2 of up to 525 µatm. Due to the strong monsoonal wind forcing the Arabian Sea as a whole and the areas of upwelling in particular represent a significant source of atmospheric CO2 with flux densities from around 2 mmol m−2 d−1 in the open ocean to 119 mmol m−2 d−1 in coastal upwelling. Local air masses passing the area of coastal upwelling showed increasing CO2 concentrations, which are consistent with such strong emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 99 (C2). pp. 3407-3415.
    Publication Date: 2018-04-27
    Description: The effect of dissolution from particulates into the supernatant solution in sediment trap sample cups has been measured for fatty acids. A mooring array with time series sediment traps was deployed in the northeast Atlantic Ocean (59°N, 21°W) for 14 months. Selected representative samples from the trap at 2200 m (poisoned with NaN3) were analyzed for total and free fatty acids in both the solution and particulate phase by means of gas chromatography‐mass spectrometry with an ion trap detector. The flux contribution of the dissolved total fatty acids (∑ DTFA) was found to be between 15 and 75% of the total flux (∑ TTFA, sum of the fluxes of total fatty acids in both particles and supernatants). Dissolved free fatty acids (∑ DFFA) represented 25–88% of the total flux of free fatty acids (∑ TFFA). Absolute concentrations of total and free fatty acids in both compartments are discussed in terms of the processes controlling the distribution between the two phases, for example, readsorption. Sample handling, poisoning, bacterial activity, and swimmers may also affect fatty acid distribution. Flux data (sum of particulate and dissolved fluxes) are presented for individual fatty acids. Also, the degree of dissolution of individual fatty acids is shown for one sample (dissolved fraction ranging between 16 and 98% of total flux).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 17 (1). pp. 1005-1024.
    Publication Date: 2018-03-16
    Description: Temporal trends in oceanic dissolved inorganic carbon (DIC) and δ13C-DIC were reconstructed along five isopycnals in the upper 1000 m of the North Atlantic Ocean using a back-calculation approach. The mean anthropogenic DIC increase was 1.21 ± 0.07 μmol kg−1 yr−1 and the mean 13C decrease was −0.026 ± 0.002‰ yr−1, both in good agreement with the results from previous studies. The observed δ13C-DIC perturbation ratio is −0.024 ± 0.003‰ (μmol kg−1)−1. Our results indicate that the North Atlantic is able to maintain equilibrium with the anthropogenic perturbation for DIC and follows it with decadal time lag for δ13C. A CFC-calibrated one-dimensional isopycnal advection-diffusion model is used to evaluate temporal DIC and δ13C trends and perturbation ratios of the reconstructions. We investigate the time history of the air-sea CO2 and 13C disequilibria in the North Atlantic and discuss the importance of physical and biological processes in maintaining them. We find evidence that the North Atlantic Ocean is characterized by enhanced uptake of anthropogenic CO2. Also, we use the model to examine how the time rate of change of δ13C depends on changes in the temporal evolution of δ13C in the atmosphere. The model evolution explains the curious result that the time rate of change of surface water δ13C in the North Atlantic Ocean can exceed that observed concurrently in the atmosphere. Finally we introduce a powerful way of estimating the global air-sea pCO2 disequilibrium based on the oceanic δ13C-DIC perturbation ratio.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-16
    Description: The results of 1 year of automated pCO2 measurements in 2002/2003 onboard the car carrier M/V Falstaff are presented and analyzed with regard to the driving forces that change the seawater pCO2 in the midlatitude North Atlantic Ocean. The pCO2 in surface seawater is controlled by thermodynamics, biology, air-sea gas exchange, and physical mixing. Here we estimate the effects on the annual cycle of pCO2 and relate this property to parameters like SST, nitrate, and chlorophyll. On the basis of the amplitude in seawater pCO2 for all 4° × 5° grid boxes, this region can be separated into an eastern and western basin. The annual pCO2 cycle in the eastern basin (10°W–35°W) is less variable, which can be related to the two counteracting effects of temperature and biology; air-sea gas exchange plays a minor role when using climatological MLD. In the western basin (36°W–70°W) the pCO2 amplitude is more variable and strongly follows the thermodynamic forcing, since the biological forcing (as derived from nitrate concentrations) is decreased. Biology and air-sea exchange strongly depend on the MLD and therefore also include physical mixing effects. The pCO2 data of the analyzed region between 34°N and 52°N compare well to the Takahashi et al. [2002] climatology except for regions north of 45°N during the wintertime where the bias is significant.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 103 (C9). pp. 18681-18689.
    Publication Date: 2018-04-30
    Description: The penetration of anthropogenic or “excess” CO2 into the North Atlantic Ocean was studied along WOCE‐WHP section A2 from 49°N/11°W to 43°N/49°W using hydrographic data obtained during the METEOR cruise 30–2 in October/November 1994. A backcalculation technique based on measurements of temperature, salinity, oxygen, alkalinity, and total dissolved inorganic carbon was applied to identify the excess CO2. Everywhere along the transect surface water contained almost its full component of anthropogenic CO2 ( ∼62 μmol kg−1). Furthermore, anthropogenic CO2 has penetrated through the entire water column in the western basin of the North Atlantic Ocean. Even in the deepest waters (5000 m) of the western basin a mean value of 10.4 μmol kg−1 excess CO2 was calculated. The maximum penetration depth of excess CO2 in the eastern basin of the North Atlantic Ocean was ∼3500 m with values falling below 5 μmol kg−1 in greater depths. These results compare well with distributions of carbontetrachloride. They are also in agreement with the current understanding of the role of the “global ocean conveyor belt” for the uptake of anthropogenic CO2 into the deep ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 26 . pp. 2065-2068.
    Publication Date: 2018-02-13
    Description: We compare estimates of the anthropogenic CO2 content of seawater samples from the subpolar North Atlantic Ocean calculated on the basis of a back-calculation technique with measurements of the chlorofluorocarbon CFC-11. Estimated anthropogenic CO2 concentrations are in the range 10–80 µmol kg-1, while CFC-11 concentrations cover the full range from below detection limit to 〉 5 pmol kg-1 in waters at atmospheric equilibrium. The majority of the data points show a linear correlation between anthropogenic CO2 concentrations and CFC-11 saturation, which can only be explained by the strongly advective nature of the North Atlantic Ocean. Only deep eastern basin samples deviate from this general observation in that they show still significant concentrations of anthropogenic CO2 where CFC-11 is no longer detectable. In order to remove the influence of the Revelle factor reflected in the anthropogenic CO2 concentrations we have calculated 'excess' pCO2, showing an even tighter linear correlation with atmospheric equilibrium concentrations of CFC-11.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 84 (21). pp. 197-204.
    Publication Date: 2017-02-14
    Description: Recent measurements and model studies have consistently identified a decreasing trend in the concentration of dissolved O2 in the ocean over the last several decades. This trend has important implications for our understanding of anthropogenic climate change. First, the observed oceanic oxygen changes may be a signal of the beginning of a reorganization of large-scale ocean circulation in response to anthropogenic radiative forcing. Second, the repartitioning of oxygen between the ocean and the atmosphere requires a revision of the current atmospheric carbon budget and the estimates of the terrestrial and oceanic carbon sinks as calculated by the Intergovernmental Panel on Climate Change (IPCC) from measurements of atmospheric O2/N2.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 . pp. 1085-1088.
    Publication Date: 2018-02-20
    Description: Normalization to a constant salinity (S) is widely used for the adjustment of marine inorganic carbon chemistry data such as total alkalinity (AT) and total dissolved inorganic carbon (CT). This procedure traces back to the earliest studies in marine chemistry, but ignores the influence of riverine input of alkalinity and of dissolution of biogenic carbonates in the ocean. We tested different adjustment possibilities for AT and conclude that in most parts of the surface ocean the normalization concept does not reflect relationships which represent reality. In this paper, we propose a salinity adjustment based on a constant and region-specific term for S = 0, which expresses river run off, upwelling from below the lysocline, calcification, and lateral sea surface water exchange. One application of the normalization concept is its extension to AT and also CT predictions and implementation in models. We give a brief discussion on the usage of such extensions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...