ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-28
    Description: Permafrost coasts make up roughly one third of all coasts worldwide. Their erosion leads to the release of previously locked organic carbon, changes in ecosystems and the destruction of cultural heritage, infrastructure and whole communities. Since rapid environmental changes lead to an intensification of Arctic coastal dynamics, it is of great importance to adequately quantify current and future coastal changes. However, the remoteness of the Arctic and scarcity of data limit our understanding of coastal dynamics at a pan-Arctic scale and prohibit us from getting a complete picture of the diversity of impacts on the human and natural environment. In a joint effort of the EU project NUNATARYUK and the NSF project PerCS-Net, we seek to close this knowledge gap by collecting and analyzing all accessible high-resolution shoreline position data for the Arctic coastline. These datasets include geographical coordinates combined with coastal positions derived from archived data, surveying data, air and space born remote sensing products, or LiDAR products. The compilation of this unique dataset will enable us to reach unprecedented data coverage and will allow us a first insight into the magnitude and trends of shoreline changes on a pan-Arctic scale with locally highly resolved temporal and spatial changes in shoreline dynamics. By comparing consistently derived shoreline change data from all over the Arctic we expect that the trajectory of coastal change in the Arctic becomes evident. A synthesis of some initial results will be presented in the 2020 Arctic Report Card on Arctic Coastal Dynamics. This initiative is an ongoing effort – new data contributions are welcome!
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-11
    Description: Subsea permafrost forms when sea level rise from deglaciation or coastal erosion results in inundation of terrestrial permafrost. The response of permafrost to flooding in these settings will be determined by both ice-rich Pleistocene deposits and the thermokarst basins that thawed out during the Holocene. Thermokarst processes lower ground ice content, create partially drained and refrozen depressions (Alases) and thaw bulbs (taliks) beneath them, warm the ground, and can thaw the ground below sea level. We hypothesize that inundated Alases offshore with relatively lower ice content and higher porewater salinities in their sediments (possibly resulting from lagoon interaction) thaw faster than Yedoma terrain. To test this hypothesis, we estimated permafrost thaw rates offshore of the Bykovsky Peninsula in Tiksi Bay, northeastern Siberia using geoelectric surveys with floating electrodes. The surveys traversed a former undrained lagoon, drained and refrozen Alas deposits, and undisturbed Yedoma terrain at varying distances from shore. A continuous Yedoma-Alas-beach-lagoon survey was also carried out to obtain an indication of pre-inundation subsurface electrical resistivity. While the estimated degradation rates of the submerged Yedoma lies in the range of similar sites, and slows with increasing distance offshore, the Alas rates were more diverse and at least twice as fast within 125 m of the coastline. The latter is possibly due to saline lagoon water that infiltrated the Alas while it was still unfrozen. The ice-bearing permafrost depths of the former lagoon were generally the deepest of the terrain units, but displayed poor correlation with distance offshore. We attribute this to heterogeneous talik thickness upon the lagoon to sea transition, as well as permafrost aggradation processes beneath the spit. Given the prevalence of thermokarst basins and lakes along parts of the Arctic coastline, their effect on subsea permafrost degradation must be similarly prevalent. Remote sensing analyses suggest that 40% of lagoons wider than 500 m originated in thermokarst basins along the pan-Arctic coast. The more rapid degradation rates shown here suggest that low-ice content conduits for fluid flow may be more common than currently thought based on thermal modelling of subsea permafrost distribution.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...