ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Composite Materials  (3)
  • Chemical Engineering  (2)
  • Inorganic and Physical Chemistry  (2)
  • 2020-2021
  • 1995-1999  (7)
  • 1985-1989
  • 1975-1979
  • 1960-1964
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 2146-2147 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 1815-1823 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A finite-element analysis of Taylor flow in a cylindrical capillary was performed using a commercial FEM program (FIDAP) to solve the fundamental fluid dynamics equations together with the capillary forces at the gas-liquid interface. A moving-surface formulation was used to calculate the bubble shape. The thickness of the liquid film surrounding the gas bubble, the degree of mixing in the liquid phase, and the slip velocity between the two phases were calculated. These parameters influence the performance of monolith reactors operating in the Taylor flow regime. On comparison with experimental results it was found that the FEM calculation generally predicts a thinner liquid film, which can possibly be explained in terms of a peripheral variation in surface tension. Moreover, the wavelength of the wiggles predicted in the liquid film near the tail end of the bubble was compared to those arising from a simplified mathematical analysis available in the literature. Good agreement was found for Ca 〈 0.005, while for higher Ca the FEM predicts significantly shorter wavelengths, indicating that the lubrication theory is not valid here.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The present numerical study is concerned with the fundamental physics of the multi-way interaction between turbulence, chemical reaction and buoyancy in a nonpremixed flame. The method of direct numerical simulation (DNS) is used to solve the instantaneous three-dimensional governing equations (continuity, Navier-Stokes, species mass fractions and energy) under the zero-Mach number assumption. Because of the present supercomputer limitations, we consider two simple flow geometries, namely an initially uniform flow without shear (equivalent to grid-generated turbulence) and an initially uniform shear flow. In each flow, the fuel and oxidant initially exist as two separate streams. As the reactants mix, chemical reaction takes place and exothermic energy is released causing variations in density. In the presence of a gravity field, the spatial and temporal distributions of the induced buoyancy forces depend on the local density gradients and the direction of the gravitational acceleration.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 173-178; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: Trace levels of molecular oxygen are measured by introducing a gas containing the molecular oxygen into a target zone, and impacting the molecular oxygen in the target zone with electrons at the O(-) resonant energy level for dissociative electron attachment to produce O(-) ions. Preferably, the electrons have an energy of about 4 to about 10 eV. The amount of O(-) ions produced is measured, and is correlated with the molecular oxygen content in the target zone. The technique is effective for measuring levels of oxygen below 50 ppb. and even less than 1 ppb. The amount of O(-) can be measured in a quadrupole mass analyzer. Best results are obtained when the electrons have an energy of about 6 to about 8 eV. and preferably about 6.8 eV. The method can be used for other species by selecting the appropriate electron energy level.
    Keywords: Inorganic and Physical Chemistry
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of materials made of laminating thin homogenous films to lightweight fabrics are being considered us structura1 gas envelops. The emerging composite materials are a result of recent advances in the manufacturing cf 1ightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barrier film results in wide range of materials suitable for various loading and environmental conditions. Polyester - based woven fabrics laminated to thin homogeneus film of polyester (Maylar) is an example of this class. This fabric/ film laminate is being considered for the development a material suitable for building large gas envelopes for use in the NASA Ultra Long Duration Balloon Program (ULDB). Compared to commercial homogeneus films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation. The purpose of this papers is to introduce the mechanical behavior of this class of multi-layers composite and to highlight some of the concerns observed during the characterization of these laminate composites.
    Keywords: Composite Materials
    Type: ANTEC99; May 02, 1999 - May 06, 1999; New York, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Films reinforced with woven fabrics are being considered for the development of a material suitable for long duration scientific balloons under a program managed by the National Aeronautics and Space Administration (NASA). Recently developed woven fabrics provide a relatively high strength to weight ratio compared to standard homogenous films. Woven fabrics also have better crack propagation resistance and rip stop capabilities when compared to homogenous lightweight, high strength polymeric films such as polyester and nylon. If joining is required, such as in the case of scientific balloons, woven fabrics have the advantage over polymeric thin films to utilize traditional textile methods as well as other techniques including hot sealing, adhesion, and ultrasonic means. Woven fabrics, however, lack the barrier properties required for helium filled scientific balloons, therefore lamination with homogenous films is required to provide the gas barrier capabilities required in these applications.
    Keywords: Composite Materials
    Type: Composite Materials; Jul 05, 1998 - Jul 11, 1998; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Inflatable structures are gaining wide support in planetary scientific missions as well as commercial applications. For such applications a new class of fabric/film laminates is being considered for use as a structural gas envelope. The emerging composite materials are a result of recent advances in the manufacturing of lightweight, high strength fibers, fabrics and scrims. The lamination of these load-carrying members with the proper gas barriers results in a wide range of materials suitable for various loading and environmental conditions. Polyester-based woven fabrics laminated to thin homogenous film of polyester are an example of this class. This fabric/film laminate is being considered for the development of a material suitable for building large gas envelopes for use in the NASA ultra long duration balloon program (ULDB). Compared to commercial homogenous films, the material provides relatively high strength to weight ratio as well as better resistance to crack and tear propagation, The mechanical, creep and viscoelastic properties of these fabric film laminates have been studied to form a material model. Preliminary analysis indicates that the material is highly viscoelastic. The mechanical properties of this class of materials will be discussed in some details.
    Keywords: Composite Materials
    Type: Balloon Technology; Jun 29, 1999 - Jul 01, 1999; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...