ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (30)
  • American Geophysical Union  (14)
  • Frontiers Media
  • ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft Kiel, Hamburg
  • 2020-2023  (4)
  • 2020-2021
  • 2010-2014  (26)
  • 2005-2009  (18)
Collection
Publisher
Years
Year
  • 1
  • 2
    Publication Date: 2022-10-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chase, A. P., Boss, E. S., Haentjens, N., Culhane, E., Roesler, C., & Karp-Boss, L. Plankton imagery data inform satellite-based estimates of diatom carbon. Geophysical Research Letters, 49(13), (2022): e2022GL098076, https://doi.org/10.1029/2022GL098076.
    Description: Estimating the biomass of phytoplankton communities via remote sensing is a key requirement for understanding global ocean ecosystems. Of particular interest is the carbon associated with diatoms given their unequivocal ecological and biogeochemical roles. Satellite-based algorithms often rely on accessory pigment proxies to define diatom biomass, despite a lack of validation against independent diatom biomass measurements. We used imaging-in-flow cytometry to quantify diatom carbon in the western North Atlantic, and compared results to those obtained from accessory pigment-based approximations. Based on this analysis, we offer a new empirical formula to estimate diatom carbon concentrations from chlorophyll a. Additionally, we developed a neural network model in which we integrated chlorophyll a and environmental information to estimate diatom carbon distributions in the western North Atlantic. The potential for improving satellite-based diatom carbon estimates by integrating environmental information into a model, compared to models that are based solely on chlorophyll a, is discussed.
    Description: Funding for this work was provided by NASA grants #NNX15AE67G and #80NSSC20M0202. A. Chase is supported by a Washington Research Foundation Postdoctoral Fellowship.
    Keywords: Diatoms ; Carbon ; Remote sensing ; Pigments ; Cell imagery
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-05-01
    Print ISSN: 1936-5209
    Electronic ISSN: 1940-3496
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-16
    Description: [1]  Phytoplankton are an important component of the oceanic carbon cycle. Yet, due to methodological constraints, the carbon biomass of phytoplankton is poorly characterised. To address this limitation, we have explored the bio-optical relationship between in-situ measurements of the particle backscattering coefficient at 470 nm, b bp (470), and the phytoplankton carbon concentration for cells with diameter less than 20  μ m (C f ). We found a significant relationship between b bp (470) and C f for Atlantic oceanic waters with chlorophyll-a concentrations less than 0.4 mg m -3 (or b bp (470) 〈 0.003 m -1 ). This relationship could be used to estimate C f from data collected by in-situ autonomous platforms and from remote sensing of ocean colour.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-13
    Description: [1]  The Dead Sea, located in the rift valley between Jordan and Israel, is a hypersaline lake, resulting in unique biogeochemistry and optical properties. In the spring of 2004 we conducted two days of physical and optical measurements in the lake. Because of the significant effect of dissolved salts onthe optical propertiesof water,our analysis required a novel processing approach to obtain dissolved and total inherent optical properties from the measurements. In addition, we show that the lake's salinity can be estimated from measurements of hyper-spectral absorption or attenuation spectra in the red and infrared parts of the spectrum, using published values of specific absorption of dissolved NaCl, despite the fact that the lake's salt chemistry is complex. In situ observations demonstrated that the lake has a two-layer structure with a warm and more turbid layer at the top 20-30 m and a clearer colder layer below. Both the particulate and dissolved absorption are well approximated by exponentially decreasing functions with the spectral slope of the particulate absorption about half that of the dissolved fraction and consistent with other aquatic environments. Both have relatively low and similar magnitudes in the blue (O(0.15 m -1 )). Mean particle size was observed to increase with depth consistent with precipitating salt crystals (observed in past campaigns) shown here toplay a major role in the lake's optical properties.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-24
    Description: A unique time series of moored bio-optical measurements documented the 2004 spring-summer bloom in the southern Labrador Sea. In situ and satellite chlorophyll data show that chlorophyll levels in the 2004 bloom were at the upper end of those typically observed in this region. Satellite chlorophyll and profiling float temperature/salinity data show that the main bloom, which typically peaks in June/July, is often preceded by ephemeral mixed layer shoaling and a lesser, short-lived bloom in May; this was the case in 2004. The particulate backscatter to beam attenuation ratio (bbp[470 nm]/Cp[660 nm]) showed peaks in the relative abundance of small particles at bloom initiation and during the decline of the bloom, while larger particles dominated during the bloom. Chlorophyll/Cp and bbp/chlorophyll were correlated with carbon export and dominated by changes in the pigment per cell associated with lower light levels due to enhanced attenuation of solar radiation during the bloom. An NPZ (nutrients, phytoplankton, zooplankton) model captured the phytoplankton bloom and an early July peak in zooplankton. Moored acoustic Doppler current profiler (ADCP) data showed an additional mid-June peak in zooplankton biomass which was attributed to egg-laying copepods. The data reported here represent one of the few moored time series of Cp, bbp and chlorophyll extending over several months in an open ocean region. Interpretation of data sets such as this will become increasingly important as these deployments become more commonplace via ocean observing systems. Moreover, these data contribute to the understanding of biological-physical coupling in a biogeochemically important, yet poorly studied region.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-02-16
    Description: The goal of this study was to test the hypothesis that the aggregated state of natural marine particles constrains the sensitivity of optical beam attenuation to particle size. An instrumented bottom tripod was deployed at the 12-m node of the Martha's Vineyard Coastal Observatory to monitor particle size distributions, particle size-versus-settling-velocity relationships, and the beam attenuation coefficient (cp) in the bottom boundary layer in September 2007. An automated in situ filtration system on the tripod collected 24 direct estimates of suspended particulate mass (SPM) during each of five deployments. On a sampling interval of 5 min, data from a Sequoia Scientific LISST 100x Type B were merged with data from a digital floc camera to generate suspended particle volume size distributions spanning diameters from approximately 2 μm to 4 cm. Diameter-dependent densities were calculated from size-versus-settling-velocity data, allowing conversion of the volume size distributions to mass distributions, which were used to estimate SPM every 5 min. Estimated SPM and measured cp from the LISST 100x were linearly correlated throughout the experiment, despite wide variations in particle size. The slope of the line, which is the ratio of cp to SPM, was 0.22 g m−2. Individual estimates of cp:SPM were between 0.2 and 0.4 g m−2 for volumetric median particle diameters ranging from 10 to 150 μm. The wide range of values in cp:SPM in the literature likely results from three factors capable of producing factor-of-two variability in the ratio: particle size, particle composition, and the finite acceptance angle of commercial beam-transmissometers.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-11-28
    Description: [1]   Chiswell [2013] suggests that some of the conclusions drawn by Behrenfeld et al . [2013] are likely erroneous because of (1) the method used to calculate specific net biomass accumulation rates ( r ; d -1 ) over the seasonal cycle, (2) inconsistencies in the calculation of r and phytoplankton specific cell division rate, μ (d -1 ), and (3) uncertainties in the extrapolation of satellite data to the depth of the seasonal thermocline. Each of these concerns is addressed in the following subsections. We begin with a simple culture-based analogy that clarifies why switching between concentration-based and inventory-based expressions is required for calculating r when the mixed layer varies between shoaling and deepening conditions. This analogy is followed by a more specific mathematical treatment. We then explain why our previous comparisons between r and μ provide a conservative estimate of predator-prey coupling, followed by a discussion of uncertainties in satellite-based assessments of mixed layer phytoplankton biomass.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-22
    Description: [1]  Satellite measurements allow global assessments of phytoplankton concentrations and, from observed temporal changes in biomass, direct access to net biomass accumulation rates ( r ). For the subarctic Atlantic basin, analysis of annual cycles in r reveal that initiation of the annual blooming-phase does not occur in spring after stratification surpasses a critical threshold, but rather in early winter when growth conditions for phytoplankton are deteriorating. This finding has been confirmed with in situ profiling float data. The objective of the current study was to test whether satellite-based annual cycles in r are reproduced by the Biogeochemical Element Cycling - Community Climate System Model and, if so, to use the additional ecosystem properties resolved by the model to better understand factors controlling phytoplankton blooms. We find that the model gives a similar early onset time for the blooming phase, that this initiation is largely due to the physical disruption of phytoplankton-grazer interactions during mixed layer deepening, and that parallel increases in phytoplankton specific division and loss rates during spring maintain the subtle disruption in food web equilibrium that ultimately yields the spring bloom climax. The link between winter mixing and bloom dynamics is illustrated by contrasting annual plankton cycles between regions with deeper and shallower mixing. We show that maximum water column inventories of phytoplankton vary in proportion to maximum winter mixing depth, implying that future reductions in winter mixing may dampen plankton cycles in the subarctic Atlantic. We propose that ecosystem disturbance-recovery sequences are a unifying property of global ocean plankton blooms.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-01-01
    Electronic ISSN: 1664-462X
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...