ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (10)
  • American Geophysical Union  (10)
  • American Chemical Society
  • Blackwell Publishing Ltd
  • Oxford University Press
  • 2005-2009  (10)
  • 1980-1984
Collection
Years
Year
  • 1
    Publication Date: 2021-07-14
    Description: From 25 November to 2 December 2006, the first active seismic tomography experiment at Stromboli volcano was carried out with the cooperation of four Italian research institutions. Researchers on board the R/V Urania of the Italian National Council of Research (CNR), which was equipped with a battery of four 210- cubic- inch generated injection air guns (GI guns), fired more than 1500 offshore shots along profiles and rings around the volcano.
    Description: DPC/INGV agreement 2004-2006
    Description: Published
    Description: 269-270
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.6. Fisica del vulcanismo
    Description: N/A or not JCR
    Description: reserved
    Keywords: Stromboli ; seismic tomography ; air-gun ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In this paper we provide a review of chemical and isotopic data gathered over the last three decades on Etna volcano's fluid emissions and we present a synthetic framework of their spatial and temporal relationships with the volcano-tectonic structures, groundwater circulation and eruptive activity. We show that the chemistry, intensity and spatial distribution of gas exhalations are strongly controlled by the main volcano-tectonic fault systems. The emission of mantle-derived magmatic volatiles, supplied by deep to shallow degassing of alkali-hawaiitic basalts, persistently occurs through the central conduits, producing a huge volcanic plume. The magmatic derivation of the hot gases is verified by their He, C and S isotopic ratios. Colder but widespread emanations of magma-derived CO2 and He also occur through the flanks of the volcano and through aquifers, mainly concentrated within two sectors of the south-southwest (Paternò-Belpasso) and eastern (Zafferana) flanks. In these two peripheral areas, characterized by intense local seismicity and gravity highs, magma-derived CO2 and helium are variably diluted by shallower crustal-derived fluids (organically-derived carbon, radiogenic helium). Thermal and geochemical anomalies recorded in groundwaters and soil gases within these two areas prior to the 1991-1993 eruption are consistent with an input of hot fluids released by ascending magma. Magmatic fluids interacted with the shallow aquifers, modifying their physico-chemical conditions, and led to strong variations of the soil CO2 flux. In addition to routine survey of the crater plume emissions, geochemical monitoring of remote soil gases and groundwaters may thus contribute to forecasting Etna's eruptions.
    Description: Published
    Description: 129-145
    Description: partially_open
    Keywords: Mt. Etna ; Geochemical surveillance ; Groundwaters ; Volcanic gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 2755693 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Measuring Hg/SO2 ratios in volcanic emissions is essential for better apportioning the volcanic contribution to the global Hg atmospheric cycle. Here, we report the first real-time simultaneous measurement Hg and SO2 in a volcanic plume, based on Lumex and MultiGAS techniques, respectively. We demonstrate that the use of these novel techniques allows the measurements of Hg/SO2 ratios with a far better time resolution than possible with more conventional methods. The Hg/SO2 ratios in the plume of F0 fumarole on La Fossa Crater, Vulcano Island spanned an order of magnitude over a 30 minute monitoring period, but was on average in qualitative agreement with the Hg/SO2 ratio directly measured in the fumarole (mean plume and fumarole ratios being 1.09 x 10-6 and 2.9 x 10-6, respectively). The factor 2 difference between plume and fumarole compositions provides evidence for fast Hg chemical processing the plume.
    Description: Published
    Description: L21307
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: partially_open
    Keywords: Mercury ; Fumarolic condensates ; Volcanic emissions ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Southeast Crater of Mount Etna (Italy) was characterized by a violent eruptive activity between 26 January and 24 June 2000. This activity produced 64 lava fountain episodes with repose periods from 3 hours to 10 days. We estimated a volume of about 15–20 106 m3 lava and at least 2–3 106 m3 of tephra. We compared the paroxysmal volcanic activity to its associated seismic signature: The high number of events highlighted a strict correlation between tremor and volcanic activity. Seismic and volcanic characteristics, such as the frequency of occurrence, the duration of lava fountains and the associated tremor energy, suggested the subdivision of the studied period into two stages separated by the 20 February event. Combining volcanic with seismic data, we observed some useful relationships among lava fountain height, sustained column height and Reduced Displacement; in addition, we found that the entire episode was well correlated with the duration of the amplitude increase. Computing the tremor energy linked to each event, the total energy associated with lava fountains episodes results in 76% of the energy released during the whole period. Finally, the different ratios among the overall spectral amplitude of the seismic signals of the stations located at different altitudes suggested to us the elaboration of a simple qualitative model to explain the dynamic behavior of the tremor source during the whole episode.
    Description: Published
    Description: open
    Keywords: Mount Etna ; lava fountain ; volcanic tremor ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1210256 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Every month, small-scale explosive volcanic eruptions inject more than a million cubic meters of ash into Earth’s atmosphere [Simkin and Siebert, 2000]. Of all the troubles caused by this relatively mild volcanic activity, ashfall is by far the longest-reaching one, mantling the volcano slopes and surroundings with a slippery, heavy, unhealthy, and snow-like but Sun-resistant cover. Volcanic ash is composed of pyroclasts (fragments generated and emplaced by explosive eruptions) smaller than 2 millimeters, which are easily transported by wind and have a high surface-to-volume ratio. These same features, however, also allow safe collection of the ash away from the volcano. Such pyroclasts bear the signature of the fragmentation and dispersal processes they have experienced during eruption and transport. Thus, volcanic ash provides sample material well suited for studying quasi time correlated eruption dynamics [Taddeucci et al., 2002]. Here we illustrate how current research projects funded by the Italian Department for Civil Protection combine new sampling, analytical, and experimental techniques to maximize the extraction of useful information from basaltic volcanic ash.
    Description: Published
    Description: 253–260
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: N/A or not JCR
    Description: reserved
    Keywords: Volcanic ; ash ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: This paper reports the use of diffusive tubes in determining HF, HCl, and SO2 in the volcanic plume of Mount Etna in an attempt to highlight the potential of this method in studying volcanoes. In a first application a network of 18 diffusive tubes was installed on Etna flanks, aimed at evaluating the atmospheric dispersion of the volcanic plume on a local scale. Results showed a monotonic decrease in volatile air concentrations with distance from the craters (HF from 0.15 to 〈0.003 mmol m3, HCl from 2 to 〈0.01 mmol m3, and SO2 from 11 to 0.04 mmol m3), revealing the prevalently volcanic contribution. Matching of SO2/HCl and HCl/HF volatile ratios with contemporaneous measurements at the summit craters validated the use of diffusive tubes in tracing the chemical features of a volcanic plume from remote locations. A first tentative assessment of dry deposition rates of volcanogenic acidic gases was also made, yielding 2.5 74 t d1 (SO2), 0.6 17 t d1 (HCl), and 0.02 0.6 t d1 (HF) and revealing the potential environmental impact of gas emissions. In a second experiment, carried out during the recent October 2002 to February 2003 eruption of Etna, diffusive tubes provided a continuous record of the chemical composition of the eruptive plume from a safe distance of 1 km from the vents, thus considerably decreasing the risks involved in sampling. This highlighted a clear time decrease in SO2 concentrations and SO2/HCl ratios, which was interpreted as due to progressive exhaustion of volatile degassing and eruption energy.
    Description: Published
    Description: D21308
    Description: partially_open
    Keywords: volcanic plumes ; impact of volcanic emissions ; sulfur and halogens chemistry ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 597469 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: During the onset of 2008 volcanic crisis at Mt Etna, the near-real time magnetic data provided a continuous updating of the volcano activity state on the northern flank. On the morning of 13th May 2008, significant local magnetic field changes marked the resumption of the eruptive activity characterized by the opening of a fracture field on the northern flank, and an eruptive fissure in the Valle del Bove. In agreement with the northward propagation of seismic events, magnetic signals at 5 stations in the summit area revealed a nearly NNW-SSE oriented magmatic intrusion, which started at about 9:00 GMT, propagated northward for about 2 km, and stopped at 14:00 GMT before reaching the North-East Rift. Magnetic variations, with amplitude ranging between 1.8 nT and -6.5 nT, are consistent with those calculated from piezomagnetic models, where stress-induced changes in rock magnetization are produced by the magmatic intrusion.
    Description: Published
    Description: L22301
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: partially_open
    Keywords: Mt Etna ; volcano monitoring ; piezomagnetic field ; magmatic intrusion ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: On two occasions, sudden gravity changes occurred simultaneously at two summit Etna’s stations, during local low-magnitude earthquakes. A systematic coupling between earthquakes inducing comparable maximum acceleration and displacement at the observation points and gravity steps is missing, implying (a) the non-instrumental nature of the steps and (b) the need for particular underlying conditions for the triggering mechanism(s) to activate. We review some of the volcanological processes that could induce fast underground mass redistributions, resulting in gravity changes at the surface. These processes involve bubbles and crystals present in the magma and require particular conditions in order to be effective as mass-redistributing processes. The gravity steps could be a geophysical evidence of the dynamical stress transfer between tectonic and magmatic systems at a local scale. Given the implications that these transfers may have on the volcanic activity, routine volcano monitoring should include the observation of fast gravity changes.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: gravity changes ; volcano ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Two-dimensional cross sections of the sulphur dioxide (SO2) distribution in the volcanic gas plume of Mt. Etna were reconstructed using tomographic techniques. The data for these projections were generated by a network of five automated scanning spectrometers, positioned on the flanks of the volcano. These measure slant-column amounts of SO2 at 105 different angles, every four minutes. Stable wind conditions allow the plume to be monitored on 82% of days. A time-series of plume cross sections was computed, revealing the potential of this method to track variations in plume position and structure on timescales of minutes to hours, a result of potential importance for air traffic and civil defence in case of eruption, when copious amounts of fine ash can be transported.
    Description: Published
    Description: L17811
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: tomography ; SO2 ; DOAS ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...