ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophyscial Research 117 (2012): B01409, doi:10.1029/2011JB008562.
    Description: To interpret short-term postseismic surface displacements in the context of key ambient conditions (e.g., temperature, pressure, background strain rate, water content, creep mechanism), we combined steady state and transient flow into a single constitutive relation that can explain the response of a viscoelastic material to a change in stress. The flow law is then used to investigate mantle deformation beneath the Eastern California Shear Zone following the 1999 M7.1 Hector Mine earthquake. The flow law parameters are determined using finite element models of relaxation processes, constrained by surface displacement time series recorded by 55 continuous GPS stations for 7 years following the earthquake. Results suggest that postseismic flow following the Hector Mine earthquake occurs below a depth of ~50 km and is controlled by dislocation creep of wet olivine. Diffusion creep models can also explain the data, but require a grain size (3.5 mm) that is smaller than the inferred grain size (10–20 mm) based on the mantle conditions at these depths. In addition, laboratory flow laws predict dislocation creep would dominate at the stress/grain size conditions that provide the best fit to diffusion creep models. Model results suggest a transient creep phase that lasts ~1 year and has a viscosity ~10 times lower than subsequent steady state flow, in general agreement with laboratory observations. The postseismic response is best explained as occurring within a relatively hot upper mantle (e.g., 1200–1300°C at 50 km depth) with a long-term background mantle strain rate of 0.1–0.2 μstrain/yr, consistent with the observed surface strain rate. Long-term background shear stresses at the top of the mantle are ~4 MPa, then decrease with depth to a minimum of 0.1–0.2 MPa at 70 km depth before increasing slowly with depth due to the pressure dependence of viscosity. These conditions correspond to a background viscosity of 1021 Pa s within a thin mantle lid that decreases to ~5 × 1019 Pa s within the underlying asthenosphere. This study shows the utility of using short-term postseismic observations to infer long-term mantle conditions that are not readily observable by other means.
    Description: This work was supported by the National Science Foundation grants EAR-0952234 (A.M.F.), EAR-0810188 (G.H.), and EAR-0854673 (M.D.B.).
    Description: 2012-07-31
    Keywords: Hector Mine ; Dislocation ; Mantle ; Postseismic ; Rheology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/postscript
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Physics, Luxembourg, Conseil de l'Europe, vol. 7, no. B4, pp. 195-202, pp. B04202, (ISSN: 1340-4202)
    Publication Date: 1936
    Keywords: Source ; Dislocation ; Elasticity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...