ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-13
    Description: Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (0-450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (〉10 microns) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of 0 is estimated to have been dehydrated in this event.
    Keywords: Geophysics
    Type: Paper-98GL00115 , Geophysical Research Letters (ISSN 0094-8534); 25; 4; 501-504
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: The origin of air in the lowermost stratosphere is investigated with measurements from the NASA ER-2 aircraft. Air with high water vapor mixing ratios was observed in the stratosphere at theta-330-380 K near 40 N in May 1995, indicating the influence of intrusions of tropospheric air. Assuming that observed tracer-tracer relationships reflect mixing lines between tropospheric and stratospheric air masses, we calculate mixing ratios of H2O (12-24 ppmv) and CO2 for the admixed tropospheric air at theta=352-364 K. Temperatures on the 355 K surface at 20-40 N were low enough to dehydrate air to these values. While most ER-2 CO2 data in both hemispheres are consistent with tropical or subtropical air entering the lowermost stratosphere, measurements from May 1995 for theta〈362 K suggest that entry of air from the midlatitude upper troposphere can occur in conjunction with mixing processes near the tropopause.
    Keywords: Geophysics
    Type: Paper-98GL01797 , Geophysical Research Letters (ISSN 0094-8534); 25; 14; 2655-2658
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 1012. The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A23/2 (v = 2) X23/2 (v = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (〉10) achieved in short integration times (〈1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (〈1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN13126 , Review of Scientific Instruments; 85; 4; 044101
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-15
    Description: Extensive measurement campaigns by the NASA ER-2 research aircraft have obtained a nearly pole-to-pole database of the species that control HOx (OH + HO2) chemistry. The wide dynamic range of these in situ measurements provides an opportunity to demonstrate empirically the mechanisms that control the HOx system. Measurements in the lower stratosphere show a remarkably tight correlation of OH concentration with the solar zenith angle (SZA). This correlation is nearly invariant over latitudes ranging from 70 S to 90 N and all seasons. An analysis of the production and loss of HOx in terms of the rate determining steps of reaction sequences developed by Johnston and Podolske and Johnston and Kinnison is used to clarify the behavior of the system and to directly test our understanding of the system with observations. Calculations using in situ measurements show that the production rate of HOx is proportional to O3 and ultraviolet radiation flux. The loss rate is proportional to the concentration and the partitioning of NOy (reactive nitrogen) and the concentration of HO2. In the absence of heterogeneous reactions, the partitioning of NOy is controlled by O3 and NOx and the concentration of HO2 is controlled by NOy and O3, so that the removal rate of OH is buffered against changes in the correlation of O3 and NOy. The heterogeneous conversion of NO2 to HNO3 is not an important net source of HO, because production and removal sequences are nearly balanced. Changes in NOy partitioning resulting from heterogeneous chemistry have a large effect on the loss rates of HOx, but little or no impact on the measured abundance of OH. The enhanced loss rates at high NO2/HNO3 are offset in the data set examined here by enhanced production rates resulting from increased photolysis rates resulting from the decreased O3 column above the ER-2.
    Keywords: Geophysics
    Type: Journal of Physical Chemistry A; 105; 9; 1543-1553
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-16
    Description: The first in situ measurements of ClONO2 in the lower stratosphere, acquired using the NASA ER-2 aircraft during the Polar Ozone Loss in the Arctic Region in Summer (POLARIS) mission, are combined with simultaneous measurements of ClO, NO2, temperature, pressure, and the calculated photolysis rate coefficient (J(sub ClONO2)) to examine the balance between production and loss of ClONO2. The observations demonstrate the ClONO2 photochemical steady state measurement, [ClONO2](sup PSS) = k[ClO][No2]/J(sub ClONO2), is in good agreement with the direct measurement, [ClONO2](sup MEAS). For the bulk of the data (80%), where T 〉 220 K and latitudes 〉 45 N, [ClONO2](sup PPS) = 1.15 +/- 0.36(1-sigma)[ClONO2](sup MEAS), while for T〈 220 K and latitudes 〈 45 N, the result is somewhat less at 1.01 +/- 0.30. The cause of the temperature and/or latitude trend is unidentified. These results are independent of solar zenith angle and air density, thus there is no evidence in support of a pressure-dependent quantum yield for photodissociation of ClONO2 at wavelengths 〉 300 nm. These measurements confirm the mechanism by which active nitrogen (NOx = NO + NO2) controls the abundance of active chlorine (Clx = ClO + Cl) in the stratosphere.
    Keywords: Geophysics
    Type: Paper-1999JD900288 , Journal of Geophysical Research (ISSN 0148-0227); 104; D21; 26,705-26,714
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-15
    Description: In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained in the lower stratosphere during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) are compared to results from a photochemical model that assimilates measurements of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N2O5 agree well with measured concentrations of NO and ClO, but concentrations of HO2 and OH are underestimated by 10 to 25%, concentrations of NO2 are overestimated by 10 to 30%, and concentrations of HCl are overestimated by a factor of 2. Discrepancies for [OH] and [HO2] are reduced if we allow for higher yields of O(sup 1)D) from 03 photolysis and for heterogeneous production of HNO2. The data suggest more efficient catalytic removal of O3 by hydrogen and halogen radicals relative to nitrogen oxide radicals than predicted by models using recommended rates and cross sections. Increases in [O3] in the lower stratosphere may be larger in response to inputs of NO(sub y) from supersonic aircraft than estimated by current assessment models.
    Keywords: Geophysics
    Type: NASA-CR-204901 , Paper-94GL02781 , NAS 1.26:204901 , Geophysical Research Letters (ISSN 0094-8534); 21; 23; 2547-2550
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...