ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismological Society of America  (2)
  • 2010-2014  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2010-12-01
    Description: Laboratory stick-slip friction experiments indicate that peak slip rates increase with the stresses loading the fault to cause rupture. If this applies also to earthquake fault zones, then the analysis of rupture processes is simplified inasmuch as the slip rates depend only on the local yield stress and are independent of factors specific to a particular event, including the distribution of slip in space and time. We test this hypothesis by first using it to develop an expression for radiated energy that depends primarily on the seismic moment and the maximum slip rate. From laboratory results, the maximum slip rate for any crustal earthquake, as well as various stress parameters including the yield stress, can be determined based on its seismic moment and the maximum slip within its rupture zone. After finding that our new equation for radiated energy works well for laboratory stick-slip friction experiments, we used it to estimate radiated energies for five earthquakes with magnitudes near 2 that were induced in a deep gold mine, an M 2.1 repeating earthquake near the San Andreas Fault Observatory at Depth (SAFOD) site and seven major earthquakes in California and found good agreement with energies estimated independently from spectra of local and regional ground-motion data. Estimates of yield stress for the earthquakes in our study range from 12 MPa to 122 MPa with a median of 64 MPa. The lowest value was estimated for the 2004 M 6 Parkfield, California, earthquake whereas the nearby M 2.1 repeating earthquake, as recorded in the SAFOD pilot hole, showed a more typical yield stress of 64 MPa.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-16
    Description: We investigate the ongoing seismicity in the Raton Basin and find that the deep injection of wastewater from the coal-bed methane field is responsible for inducing the majority of the seismicity since 2001. Many lines of evidence indicate that this earthquake sequence was induced by wastewater injection. First, there was a marked increase in seismicity shortly after major fluid injection began in the Raton Basin in 1999. From 1972 through July 2001, there was one M〉 or =4 earthquake in the Raton Basin, whereas 12 occurred between August 2001 and 2013. The statistical likelihood that such a rate change would occur if earthquakes behaved randomly in time is 3.0%. Moreover, this rate change is limited to the area of industrial activity. Earthquake rates remain low in the surrounding area. Second, the vast majority of the seismicity is within 5 km of active disposal wells and is shallow, ranging between 2 and 8 km depth. The two most carefully studied earthquake sequences in 2001 and 2011 have earthquakes within 2 km of high-volume, high-injection-rate wells. Third, injection wells in the area are commonly very high volume and high rate. Two wells adjacent to the August 2011 M 5.3 earthquake injected about 4.9 million cubic meters of wastewater before the earthquake, more than seven times the amount injected at the Rocky Mountain Arsenal well that caused damaging earthquakes near Denver, Colorado, in the 1960s. The August 2011 M 5.3 event is the second-largest earthquake to date for which there is clear evidence that the earthquake sequence was induced by fluid injection.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...