ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-27
    Description: Author(s): G. Zhang, X. Q. Li, X. Z. Zhang, and Z. Song We study the effect of PT -symmetric imaginary potentials embedded in the two arms of an Aharonov-Bohm interferometer on the transmission phase by finding an exact solution for a concrete tight-binding system. It is observed that the spectral singularity always occurs at k=±π/2 for a wide range of fl... [Phys. Rev. A 91, 012116] Published Mon Jan 26, 2015
    Keywords: Fundamental concepts
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-17
    Description: Author(s): X. Z. Zhang and Z. Song We systematically study the non-Hermitian version of the one-dimensional anisotropic X Y model, which in its original form is a unique, exactly solvable, quantum spin model for understanding the quantum phase transition. The distinguishing features of this model are that it has a full real spectrum i... [Phys. Rev. A 87, 012114] Published Wed Jan 16, 2013
    Keywords: Fundamental concepts
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-12
    Description: Author(s): X. Z. Zhang and Z. Song We study the geometric phase for the ground state of a generalized one-dimensional non-Hermitian quantum X Y model, which has transverse-field-dependent intrinsic rotation-time reversal symmetry. Based on the exact solution, this model is shown to have a full real spectrum in multiple regions for the... [Phys. Rev. A 88, 042108] Published Fri Oct 11, 2013
    Keywords: Fundamental concepts
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-20
    Description: Author(s): X. Z. Zhang, L. Jin, and Z. Song We systematically study the parity- and time-reversal ( PT ) symmetric non-Hermitian version of a quantum network proposed in the paper of   Christandl et al. [ Phys. Rev. Lett. 92 187902 (2004) ]. The nature of this model shows that it is a paradigm to demonstrate the complex relationship between the... [Phys. Rev. A 85, 012106] Published Thu Jan 19, 2012
    Keywords: Fundamental concepts
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-08-21
    Description: Haemostasis in the arteriolar circulation mediated by von Willebrand factor (VWF) binding to platelets is an example of an adhesive interaction that must withstand strong hydrodynamic forces acting on cells. VWF is a concatenated, multifunctional protein that has binding sites for platelets as well as subendothelial collagen. Binding of the A1 domain in VWF to the glycoprotein Ib alpha subunit (GPIbalpha) on the surface of platelets mediates crosslinking of platelets to one another and the formation of a platelet plug for arterioles. The importance of VWF is illustrated by its mutation in von Willebrand disease, a bleeding diathesis. Here, we describe a novel mechanochemical specialization of the A1-GPIbalpha bond for force-resistance. We have developed a method that enables, for the first time, repeated measurements of the binding and unbinding of a receptor and ligand in a single molecule (ReaLiSM). We demonstrate two states of the receptor-ligand bond, that is, a flex-bond. One state is seen at low force; a second state begins to engage at 10 pN with a approximately 20-fold longer lifetime and greater force resistance. The lifetimes of the two states, how force exponentiates lifetime, and the kinetics of switching between the two states are all measured. For the first time, single-molecule measurements on this system are in agreement with bulk phase measurements. The results have important implications not only for how platelets bound to VWF are able to resist force to plug arterioles, but also how increased flow activates platelet plug formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117310/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117310/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jongseong -- Zhang, Cheng-Zhong -- Zhang, Xiaohui -- Springer, Timothy A -- HL-48675/HL/NHLBI NIH HHS/ -- P01 HL048675/HL/NHLBI NIH HHS/ -- England -- Nature. 2010 Aug 19;466(7309):992-5. doi: 10.1038/nature09295.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725043" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arterioles/cytology/*physiology ; Blood Coagulation/*physiology ; Blood Platelets/chemistry/cytology/*metabolism ; Cell Line ; Hemorheology ; Humans ; Kinetics ; Ligands ; Membrane Glycoproteins/chemistry/*metabolism ; Mice ; Models, Chemical ; Models, Molecular ; Platelet Glycoprotein GPIb-IX Complex ; Protein Binding ; Protein Structure, Tertiary ; Tensile Strength ; von Willebrand Factor/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-13
    Description: Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Xueling -- Zhou, Tongqing -- Zhu, Jiang -- Zhang, Baoshan -- Georgiev, Ivelin -- Wang, Charlene -- Chen, Xuejun -- Longo, Nancy S -- Louder, Mark -- McKee, Krisha -- O'Dell, Sijy -- Perfetto, Stephen -- Schmidt, Stephen D -- Shi, Wei -- Wu, Lan -- Yang, Yongping -- Yang, Zhi-Yong -- Yang, Zhongjia -- Zhang, Zhenhai -- Bonsignori, Mattia -- Crump, John A -- Kapiga, Saidi H -- Sam, Noel E -- Haynes, Barton F -- Simek, Melissa -- Burton, Dennis R -- Koff, Wayne C -- Doria-Rose, Nicole A -- Connors, Mark -- NISC Comparative Sequencing Program -- Mullikin, James C -- Nabel, Gary J -- Roederer, Mario -- Shapiro, Lawrence -- Kwong, Peter D -- Mascola, John R -- 5U19 AI 067854-06/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1593-602. doi: 10.1126/science.1207532. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835983" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Base Sequence ; Binding Sites ; Binding Sites, Antibody ; Complementarity Determining Regions/genetics ; Crystallography, X-Ray ; Epitopes ; *Evolution, Molecular ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; HIV-1/chemistry/*immunology ; High-Throughput Nucleotide Sequencing ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin J-Chains/genetics ; Immunoglobulin Light Chains/chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-05-26
    Description: Crystal structure analyses for biological macromolecules without known structural relatives entail solving the crystallographic phase problem. Typical de novo phase evaluations depend on incorporating heavier atoms than those found natively; most commonly, multi- or single-wavelength anomalous diffraction (MAD or SAD) experiments exploit selenomethionyl proteins. Here, we realize routine structure determination using intrinsic anomalous scattering from native macromolecules. We devised robust procedures for enhancing the signal-to-noise ratio in the slight anomalous scattering from generic native structures by combining data measured from multiple crystals at lower-than-usual x-ray energy. Using this multicrystal SAD method (5 to 13 equivalent crystals), we determined structures at modest resolution (2.8 to 2.3 angstroms) for native proteins varying in size (127 to 1148 unique residues) and number of sulfur sites (3 to 28). With no requirement for heavy-atom incorporation, such experiments provide an attractive alternative to selenomethionyl SAD experiments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3769101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Qun -- Dahmane, Tassadite -- Zhang, Zhen -- Assur, Zahra -- Brasch, Julia -- Shapiro, Lawrence -- Mancia, Filippo -- Hendrickson, Wayne A -- GM034102/GM/NIGMS NIH HHS/ -- GM062270/GM/NIGMS NIH HHS/ -- GM095315/GM/NIGMS NIH HHS/ -- R01 GM034102/GM/NIGMS NIH HHS/ -- R01 GM062270/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 May 25;336(6084):1033-7. doi: 10.1126/science.1218753.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New York Structural Biology Center, National Synchrotron Light Source (NSLS) X4, Brookhaven National Laboratory, Upton, NY 11973, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628655" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry ; Crystallography, X-Ray/*methods ; Data Interpretation, Statistical ; GPI-Linked Proteins/chemistry ; Models, Molecular ; Nerve Tissue Proteins/chemistry ; *Protein Conformation ; Protein Kinases/chemistry ; Protein Structure, Tertiary ; Proteins/*chemistry ; Selenomethionine/chemistry ; Signal-To-Noise Ratio ; Sulfur/chemistry ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-10-19
    Description: Author(s): R. Wang, X. Z. Zhang, and Z. Song We study a non-Hermitian Rice-Mele model without breaking time-reversal symmetry, with the non-Hermiticity arising from imbalanced hopping rates. The Berry connection, Berry curvature, and Chern number are introduced in the context of biorthonormal inner product. It is shown that for a bulk system, ... [Phys. Rev. A 98, 042120] Published Thu Oct 18, 2018
    Keywords: Fundamental concepts
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-02-11
    Description: The anaphase-promoting complex or cyclosome (APC/C) is an unusually large E3 ubiquitin ligase responsible for regulating defined cell cycle transitions. Information on how its 13 constituent proteins are assembled, and how they interact with co-activators, substrates and regulatory proteins is limited. Here, we describe a recombinant expression system that allows the reconstitution of holo APC/C and its sub-complexes that, when combined with electron microscopy, mass spectrometry and docking of crystallographic and homology-derived coordinates, provides a precise definition of the organization and structure of all essential APC/C subunits, resulting in a pseudo-atomic model for 70% of the APC/C. A lattice-like appearance of the APC/C is generated by multiple repeat motifs of most APC/C subunits. Three conserved tetratricopeptide repeat (TPR) subunits (Cdc16, Cdc23 and Cdc27) share related superhelical homo-dimeric architectures that assemble to generate a quasi-symmetrical structure. Our structure explains how this TPR sub-complex, together with additional scaffolding subunits (Apc1, Apc4 and Apc5), coordinate the juxtaposition of the catalytic and substrate recognition module (Apc2, Apc11 and Apc10 (also known as Doc1)), and TPR-phosphorylation sites, relative to co-activator, regulatory proteins and substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schreiber, Anne -- Stengel, Florian -- Zhang, Ziguo -- Enchev, Radoslav I -- Kong, Eric H -- Morris, Edward P -- Robinson, Carol V -- da Fonseca, Paula C A -- Barford, David -- Cancer Research UK/United Kingdom -- England -- Nature. 2011 Feb 10;470(7333):227-32. doi: 10.1038/nature09756.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21307936" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Anaphase-Promoting Complex-Cyclosome ; Animals ; Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc5 Subunit, Anaphase-Promoting Complex-Cyclosome ; Apc8 Subunit, Anaphase-Promoting Complex-Cyclosome ; Biocatalysis ; Cell Line ; Holoenzymes/chemistry/metabolism/ultrastructure ; Mass Spectrometry ; Microscopy, Electron ; Models, Molecular ; Molecular Weight ; Protein Binding ; Protein Conformation ; Protein Subunits/chemistry/isolation & purification/metabolism ; Recombinant Proteins/chemistry/metabolism/ultrastructure ; Saccharomyces cerevisiae/chemistry/genetics ; Saccharomyces cerevisiae Proteins/chemistry/isolation & ; purification/metabolism/ultrastructure ; Scattering, Radiation ; Schizosaccharomyces/chemistry ; Structure-Activity Relationship ; Substrate Specificity ; Ubiquitin-Protein Ligase Complexes/*chemistry/*metabolism/ultrastructure ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-05
    Description: Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doria-Rose, Nicole A -- Schramm, Chaim A -- Gorman, Jason -- Moore, Penny L -- Bhiman, Jinal N -- DeKosky, Brandon J -- Ernandes, Michael J -- Georgiev, Ivelin S -- Kim, Helen J -- Pancera, Marie -- Staupe, Ryan P -- Altae-Tran, Han R -- Bailer, Robert T -- Crooks, Ema T -- Cupo, Albert -- Druz, Aliaksandr -- Garrett, Nigel J -- Hoi, Kam H -- Kong, Rui -- Louder, Mark K -- Longo, Nancy S -- McKee, Krisha -- Nonyane, Molati -- O'Dell, Sijy -- Roark, Ryan S -- Rudicell, Rebecca S -- Schmidt, Stephen D -- Sheward, Daniel J -- Soto, Cinque -- Wibmer, Constantinos Kurt -- Yang, Yongping -- Zhang, Zhenhai -- NISC Comparative Sequencing Program -- Mullikin, James C -- Binley, James M -- Sanders, Rogier W -- Wilson, Ian A -- Moore, John P -- Ward, Andrew B -- Georgiou, George -- Williamson, Carolyn -- Abdool Karim, Salim S -- Morris, Lynn -- Kwong, Peter D -- Shapiro, Lawrence -- Mascola, John R -- P01 AI082362/AI/NIAID NIH HHS/ -- R01 AI100790/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2014 May 1;509(7498):55-62. doi: 10.1038/nature13036. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2]. ; 1] Department of Biochemistry, Columbia University, New York, New York 10032, USA [2]. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [4]. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa. ; Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA. ; Torrey Pines Institute, San Diego, California 92037, USA. ; Weill Medical College of Cornell University, New York, New York 10065, USA. ; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa. ; Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA. ; Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa. ; Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and NHLS, Cape Town 7701, South Africa. ; Department of Biochemistry, Columbia University, New York, New York 10032, USA. ; 1] NISC Comparative Sequencing program, National Institutes of Health, Bethesda, Maryland 20892, USA [2] NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Department of Medical Microbiology, Academic Medical Center, Amsterdam 1105 AZ, Netherlands. ; 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA [2] Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California 92037, USA [3] IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA [4] Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA [2] Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA [3] Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA. ; 1] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [2] Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and NHLS, Cape Town 7701, South Africa. ; 1] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa [2] Department of Epidemiology, Columbia University, New York, New York 10032, USA. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, 2131, South Africa [2] Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2050, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, 4013, South Africa. ; 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Department of Biochemistry, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590074" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity/genetics/immunology ; Antigens, CD4/immunology/metabolism ; B-Lymphocytes/cytology/immunology/metabolism ; Binding Sites/immunology ; Cell Lineage ; Complementarity Determining Regions/chemistry/genetics/immunology ; Epitope Mapping ; Epitopes, B-Lymphocyte/chemistry/immunology ; Evolution, Molecular ; HIV Antibodies/chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp160/*chemistry/*immunology ; HIV Infections/immunology ; HIV-1/chemistry/immunology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Neutralization Tests ; Protein Structure, Tertiary ; Somatic Hypermutation, Immunoglobulin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...